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Abstract 

An important part of understanding the neural control of 

speaking is determining how sensory feedback is processed. 

The role of sensory feedback in speaking suggests a paradox: 

it need not be present for intelligible speech production, but if 

it is present, it needs to be correct or speech output will be 

affected.  For this reason, current models of speech motor 

control relegate sensory feedback to a more indirect role, with 

an inner feedback loop within the CNS that directly controls 

speech output, and a slower outer feedback loop where the 

possibly delayed and intermittent sensory feedback updates the 

internal feedback loop. Such models can be described as 

variations on a more general theory of state feedback control 

(SFC). Here we show, via numerical simulations, how the SFC 

model can account not only for what is known about the 

behavioral role of sensory feedback in speaking, but also 

many of our recent findings about neural responses to 

auditory feedback. 

 

Keywords: speech motor control, sensory feedback, numerical 

simulation 

1. Introduction 

The paradoxical role of sensory feedback in speaking is 

that it is not necessary for intelligible production, but if it is 

present, it needs to be correct or speech will be affected 

(Houde & Nagarajan, 2011). For these reasons, current models 

of speech motor control relegate sensory feedback to a more 

indirect role, with an inner feedback loop within the CNS that 

directly controls speech output, and actual sensory feedback 

(both auditory and somatosensory feedback) forming slower, 

possibly delayed and intermittent, external loops that update 

the internal feedback loop (Guenther & Vladusich, 2012; 

Price, Crinion, & Macsweeney, 2011; Tian & Poeppel, 2010). 

Such models can be described as variations on the general 

theory of state feedback control (SFC), developed in the 

domain of modern control engineering theory (Houde & 

Nagarajan, 2011). SFC models have become more prevalent in 

many domains of motor control research, and we have 

previously described the hypothesized applicability of SFC to 

modeling speech motor control (Houde & Nagarajan, 2011).  

Here, we construct a numerical simulation of an SFC 

model and show how it accounts not only for behavioral 

phenomena associated with the roles of sensory feedback in 

speaking, but also several of our past experimental findings 

concerning the neural phenomena involved in auditory 

feedback processing during phonation.  

2. Structure of the SFC model 

To facilitate comparison with our experiments, we illustrate 

our model by focusing on the production of pitch, although 

our model can easily be generalized to other aspects of speech 

production. 

Figure 1: SFC model of how the CNS controls phonation. See text 

for description. 

In this model, production of an utterance involving phonation 

begins in the CNS with higher frontal cortex (IFG) activating a 

phonation control network (blue arrow in Figure 1). This 

network controls phonation via state feedback control (SFC): 

During phonation, vPMC maintains a running estimate of the 

current dynamic state of the larynx (i.e., the estimated 

laryngeal state; orange in Figure 1); this state carries 

information about current sub-glottal pressure, vocal fold 

position, tension, and any other parameter the network has 

learned is important to monitor for achieving phonation.  M1 

generates laryngeal controls based on this state estimate, using 

a state feedback control law (state fb ctrl law in Figure 1) that 

keeps the larynx tracking a desired state (e.g., one that 

maintains a desired pitch).  While the larynx responds to these 

controls, vPMC uses a copy of these controls (“efference 

copy”) to predict the next laryngeal state. It feeds this 

prediction forward (green arrows) to the higher sensory areas 

(SII/IPL in somatosensory feedback and vSMG/pSTSfor 

auditory feedback) that use it to predict sensory feedback. At 

the primary sensory cortices (S1 in somatosensory cortex and 

A1 in auditory cortex), feedback from the larynx is compared 

with the feedback predictions, resulting feedback prediction 

errors. The higher sensory areas convert these feedback 

predictions into state corrections (state corr somato, state 

corr auditory in Figure 1) that are fed back (red arrows) to 

vPMC and added to the original state prediction, resulting in a 

refined estimate of the next laryngeal state (orange). This in 

turn is fed back to M1 to generate the next laryngeal controls. 
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3. A simulation of an SFC model of pitch 

control 

To verify and illustrate the claims we have made about the 

SFC model, we have developed a simulation of SFC-based 

control of speech. For simplicity, the model controls a one-

dimensional “speech output” which we have likened to pitch. 

However, it is straightforward to extend the simulation to 

control more realistic, multi-dimensional speech output (e.g. 

loudness, pitch, formants, frication).  The simulation was 

implemented in Matlab (The Mathworks, Inc., Natick, MA), 

and consists of two parts: the “larynx” and the “phonation 

control network”. 

3.1. The “larynx” 

The “larynx” to be controlled is modeled as a single damped 

spring-mass system with a variable rest length of the spring. 

Position of the mass of this system is taken to be the current 

pitch output of the vocal tract. This model is based on the 

idealization (admittedly incomplete) that vocal fold length 

(i.e., position of the mass) determines pitch, and that the 

muscles controlling vocal fold length (e.g. the cricothyroid 

muscle (Titze, Jiang, & Drucker, 1988)) can be modeled as 

damped spring-mass systems with variable spring rest length 

(Hill, 1925). This model is not intended to simulate the rich 

range of laryngeal behaviors captured in multidimensional 

models (e.g. (Story & Titze, 1995)), but rather to act as a 

system with dynamics that the controller (i.e., the “phonation 

control network”) must contend with to control pitch. Rest 

length of the muscle controlling pitch is, in turn, controlled by 

“brainstem/spinal cord” lower motor system that in turn 

integrates descending cortical control into a constantly updated 

rest length of the muscle (Shalit, Zinger, Joshua, & Prut, 

2012). In this way, the simulation assumes that cortical motor 

output codes only desired changes in the current pitch output. 

Based on the findings of prior motor control studies, the 

descending cortical control signal is also subject to “signal 

dependent noise” (Harris & Wolpert, 1998). This means that 

the control signal actually seen by the lower motor system is 

the cortical motor output plus noise that scales with the 

magnitude of the cortical motor output. 

This simulated “larynx” produces two types of sensory 

“feedback”. First, an “auditory” output is idealized as linear 

conversion to Hz from muscle position to a reasonable value 

for a speaking pitch, and is assumed to be corrupted by 

additive white Gaussian “observation” noise that has a 

feedback delay of 150 ms (Houde & Nagarajan, 2011). 

Second, a “somatosensory” output is included, reflecting the 

current position of the mass of the muscle spring/mass system 

also corrupted by white Gaussian noise, with a feedback delay 

of 15 ms 

3.2. The “phonation control network” 

The simulated “phonation control network” for controlling 

pitch is made up of two parts: (1) an observer: a system that 

estimates the current state of the larynx and (2) a state 

feedback control law that uses the state estimate to generate 

controls of the vocal tract. Most of the phonation control 

network is engaged in implementing the observer via 

interaction of feedforward predictions and feedback 

corrections (i.e., the green and red arrows in Figure 1). Here, 

we focus on the observer system. Although in principle, we 

could use optimal control theory to implement the state 

feedback control law (Houde & Nagarajan, 2011), for 

simplicity here, we implement a more rudimentary servo 

control law where the forward model is first used to estimate 

the current, undelayed auditory output of the larynx from the 

current state estimate. This estimated current output is then 

compared with the current desired output, with the difference 

passed through a control gain G to generate control applied to 

the laryngeal simulation on the next time step. 

3.2.1. The Kalman Filter Based Observer 

The observer estimates state via a recurrent prediction-

correction process where a prediction of next state is used to 

generate sensory predictions that are compared with incoming 

feedback. The resulting feedback prediction errors are 

converted by observer gains (state corr somato, state corr 

auditory in Figure 1) into corrections of the state prediction. 

When these gains are computed optimally (i.e., based on the 

noise characteristics of the sensory feedback), the observer is 

referred to as a Kalman filter (Houde & Nagarajan, 2011). We 

therefore implemented the observer as a Kalman filter, 

reflecting the assumption that the CNS would also seek 

optimal values for the observer gains. 

The heart of the Kalman filter observer simulation is a forward 

predictive model of the current state of the lower 

motor/muscle “vocal tract”. For the simulations, the forward 

model is simply a copy of the parameters of the state space 

model used to simulate the vocal tract. Our simulations here 

do not include the process of learning all parameters of the 

forward model, and instead concentrate on how the speech 

motor system behaves after some parameters of the forward 

model have been learned. In particular, the model estimates 

the feedback delay and the covariances of the state and 

observation noise that determine the Kalman gain, by cross-

correlating auditory feedback with somatosensory feedback.  

The predicted feedback output of the forward model is delayed 

by the estimated feedback delay before being compared with 

the incoming feedback. The resulting delayed feedback 

prediction error is multiplied by a Kalman gain function to 

compute a correction to the state prediction of the forward 

model. We approximated this gain by first computing the 

steady-state Kalman gain assuming zero feedback delay 

(Houde & Nagarajan, 2011), then computing the effect of this 

gain after it has been propagated through the forward model N 

time steps, where N is the estimated feedback delay. 

Ultimately, this way of calculating the Kalman gain quantifies 

the intuition that a feedback prediction error from N time steps 

in the past (the feedback delay) becomes less and less 

informative about the current laryngeal state as N increases. 

4. Results 

We simulated two different auditory feedback experiments we 

have previously conducted. Both of these experiments contrast 

responses to auditory feedback from the subject’s ongoing 

speech (the speaking condition) with passive re-listening to 

playback of auditory feedback from the speaking condition 

(the listening condtion). To facilitate comparison of simulation 

results with experimental data, our simulation includes a 

simplified model of evoked response potential (ERP) 

generation (David, Harrison, & Friston, 2005). 

4.1. Speech Onset 

Figure 2 shows one trial from a simulated 100-trial speech 

onset experiment. The top panel shows the behavioral outputs 

of the simulation, showing that onset of a 120 Hz phonation 

target (yt) results in a pitch output (y) that initially slightly 

deviates from (undershoots) the target. This undershoot is due 
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to signal-dependent noise added to the large initial laryngeal 

control.  

Figure 2: single trial from simulated speech onset experiment. 1st 

(top) panel: yt: target pitch, y: output pitch, ydel: auditory feedback 

received by phonation control network, with 150ms auditory 

processing delay.  2nd panel: deviation of this single trial from the 

median across trials, showing initial undershoot and subsequent 

“centering”. 3rd panel: feedback prediction error (ye) in the speak and 

listen conditions of this trial. 4th panel: ERPs of the feedback 

prediction errors (ERP(ye)), showing SIS as the ERP difference 

between the speak and listen conditions. 

Figure 3: The SIS falloff effect. Scatterplot of the relation between 

SIS (y-axis) and initial deviation from median output pitch in the 

simulated speech onset experiment 

This undershoot generates both auditory and somatosensory 

feedback prediction errors that, via their Kalman gains, 

generate state estimate corrections resulting in small, 

corrective laryngeal controls that counteract the initial 

undershoot as the utterance continues.  The 2nd panel shows 

how this initial undershoot and subsequent correction can also 

be seen by measuring how much pitch output for a single trial 

deviates from the median pitch output over all trials. Such 

analysis avoids explicit reference to the pitch target and 

duplicates similar analysis done in our experimental studies 

(Niziolek, Nagarajan, & Houde, 2013), where we refer to the 

subsequent correction as “centering”. The 3rd panel shows 

auditory feedback prediction errors (ye) for both the speaking 

condition (red), compared to the listening condition (blue), 

while the 4th panel shows the simulated ERPs corresponding to 

these prediction errors. The prediction error in the listen 

condition is very large because the speech onset is not 

predicted when passively listening to an external speech 

source, whereas the prediction error in the speak condition is 

smaller because a speaker is able to predict his/her own speech 

onset, via efference copy of his/her own laryngeal controls. 

Thus, the ERP in the speak condition is smaller than the ERP 

in the listen condition. This replicates the speaking-induced 

suppression (SIS) effect we commonly see in speech onset 

experiments (Kort, Nagarajan, & Houde, 2014). 

In the speak condition, the size of the ERP is related to the 

unpredicted deviation of auditory feedback (ydel) from the 

target pitch. Figure 3 shows in a scatterplot across all trials 

that this means that initial deviation from the across-trial 

median (a surrogate for the target pitch)  is closely related to 

the size of the speak – listen ERP (SIS) difference,  which 

replicates the “SIS falloff” effect we have recently 

documented experimentally (Niziolek et al., 2013). 

4.2. Speech Feedback Perturbation 

Figure 4 shows one trial from a simulated 100-trial auditory 

feedback perturbation experiment. The top panel shows the 

behavioral outputs of the simulation, showing (in light blue) 

the auditory feedback, perturbed for 400 msec by a 100 cent 

(one semitone) shift down in pitch, and (in green) the effect 

this has on output pitch: in this trial, it induces  65% 

compensation. 

Figure 4: Single trial from the simulated auditory feedback 

perturbation experiment. 1st (top) panel: a -100cent pitch 

perturbation is introduced between the model output (mic, for 

“microphone”) and the model’s auditory input (ear for “earphone”). 

2nd panel: the auditory feedback prediction error (ye) generated by the 

feedback perturbation. 3rd panel: the somatosensory prediction error 

created by the compensatory response. 4th panel: equal ERPs from 

feedback prediction errors (ye) in the speak and listen conditions. 5th 

panel: enhanced ERPs from state corrections (xe(1)) in the speak 

condition, compared with the listen condition 

Several factors influence how much compensation will be 

expressed on each trial. First, compensation for the auditory 

feedback perturbation is moderated by conflicting information 

conveyed by somatosensory feedback, which remains 

unaltered.  

The next panels of Figure 4 show these conflicting influences 

on compensation. The 2nd panel shows that the auditory 

feedback perturbation creates an auditory feedback prediction 

error that is then reduced by the compensatory response.  But 

the 3rd panel shows the compensatory response itself then 

creates a somatosensory feedback prediction error that results 
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an opposing influence on the realized compensation. The 

strength of this opposing influence is regulated by the Kalman 

gain on somatosensory feedback prediction errors, which in 

turn is determined by the estimated somatosensory observation 

noise – i.e., the estimated reliability of somatosensory 

feedback. In the simulation shown here in the plots, mean 

compensation was 31.6%, but if we increase somatosensory 

noise from 0.005 to 0.05, mean compensation rises to 36.9% 

due to the decreased reliability (i.e., the “numbing”) of 

somatosensory feedback. This is consistent with prior findings 

about the effect of numbing somatosensation on compensation 

for pitch feedback perturbations (Larson, Altman, Liu, & 

Hain, 2008). 

Other factors cause measured compensation to vary from trial 

to trial around the mean. State noise and observation (sensory 

feedback) noise cause feedback to fluctuate over the course of 

the simulation, which directly affects the measurement of peak 

compensation used to gauge compensation on individual trials. 

But the fluctuating feedback also indirectly affects 

compensation, because we hypothesize that the Kalman gain 

on sensory feedback is continually re-estimated from current 

sensory feedback over the course of the experiment. This re-

estimation causes the Kalman gain to vary slightly from trial 

to trial, and since the size of the Kalman gain determines 

magnitude of compensation on each trial, compensation 

therefore fluctuates because of this. 

Evidence that fluctuation in the Kalman gain contributes to 

compensation variability in real experiments comes from 

consideration of additional outputs of the simulation. The 4th 

panel of Figure 4 shows ERPs generated from the auditory 

feedback prediction errors in the speak (red) and listen (blue) 

conditions of the experimernt. At speech onset, these two 

responses differ greatly, demonstrating the SIS effect, but here 

the two responses are identical, since unlike speech onset, the 

externally-applied pitch perturbation is equally unexpected in 

both the speak and listen conditions. The 5th panel, however, 

shows that these equal feedback prediction errors nevertheless 

result in unequal state estimate corrections. The panel shows 

ERPs generated from state estimate corrections in the speak 

(red) and listen (blue) conditions, with larger ERPs 

(corresponding to larger state corrections) in the speak 

condtion. This speech perturbation response enhancement 

(SPRE) matches that seen in our prior studies (Chang, 

Niziolek, Knight, Nagarajan, & Houde, 2013; Kort et al., 

2014), and in the simulations is the result of the Kalman gain 

on auditory feedback being larger in the speak condition than 

in the listen condition (because of the inability to ascribe the 

total variance to anything but observation noise). 

Figure 5: Correlation with compensation. Scatterplots comparing 

regression of percent compensation with ERPs from feedback 

prediction errors (ye) (left) which exhibit only SIS, and ERPs from 

state corrections (xe(1)) (right) which exhibit SPRE. 

SPRE, therefore, is due to action of the Kalman gain on 

feedback prediction errors, and so activity in the parts of the 

model expressing SPRE will reflect trial-to-trial variability in 

the Kalman gain not seen in the feedback prediction errors. 

Thus, since Kalman gain determines compensation magnitude, 

ERPs from SPRE-expressing parts of the model (i.e., ERPs 

from state corrections) will be more correlated with trial-to-

trial variation in compensation than ERPs from model 

components expressing only SIS (i.e., ERPs from feedback 

prediction errors). Figure 5 shows that this is the case in our 

simulations, which matches what we have found in previous 

pitch feedback perturbation experiments (Chang et al., 2013). 

5. Conclusions 

The concept of state feedback control (SFC) is a powerful and 

flexible model of motor control, and many current models of 

speech motor control can be described as examples of SFC. 

Here, we have considered an SFC model of speech motor 

control with a very general form, and found it can account for 

many of the known characteristics of the role of auditory 

feedback in the control of speech, as well as many of the 

phenomena observed in our previous studies of the neural 

processing of auditory feedback. 
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