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Abstract

When speakers are exposed to auditory feedback perturbations

of a particular vowel, they not only adapt their productions of

that vowel but also transfer this change to other, untrained, vow-

els. However, current models of speech sensorimotor adapta-

tion, which rely on changes in the feedforward control of spe-

cific speech units, are unable to account for this type of gen-

eralization. Here, we developed a neural-network based model

to simulate speech sensorimotor adaptation, and assess whether

updates to internal control models can account for observed pat-

terns of generalization. Based on a dataset generated from the

Maeda plant, we trained two independent neural networks: 1)

an inverse model, which generates motor commands for desired

acoustic outcomes and 2) a forward model, which maps motor

commands to acoustic outcomes (prediction). When vowel for-

mant perturbations were given, both forward and inverse mod-

els were updated when there was a mismatch between predicted

and perceived output. Our results replicate behavioral experi-

ments: the model altered its production to counteract the pertur-

bation, and showed gradient transfer of this learning dependent

on acoustic distance between training and test vowels. These

results suggest that updating paired forward and inverse mod-

els provides a plausible account for sensorimotor adaptation in

speech.

Index Terms: sensorimotor adaptation, modeling, transfer of

learning, internal models

1. Introduction

When speakers are exposed to alterations of their auditory feed-

back that perturb their vowel formants, they respond by adapt-

ing their speech over time to oppose that perturbation. For ex-

ample, a perturbation which raises the first vowel formant (F1)

causes participants to produce lower F1 values [1, 2]. Previ-

ous work has shown that such speech motor learning transfers

in a gradient fashion to untrained words and vowels [3]. In this

study, participants produced a word (/pVn/) containing one of

the vowels /I/, /E/, or /æ/ repeatedly over many trials. While

speaking, participants received altered auditory feedback, such

that the F1 they heard through headphones was higher than the

F1 they produced. As expected, participants in all cases adapted

by lowering their F1 by the end of training. Subsequently, all

participants produced the word /pEn/ with unaltered feedback in

order to assess the transfer of learning from the trained vowel

(/I/, /E/, or /æ/) to /E/. The results showed that learning did trans-

fer, but only partially. The magnitude of transfer was related to

the acoustic distance (in F1-F2 space) between the training and

transfer vowels; transfer was higher for /æ/ than for /I/, and both

were lower than the amount of learning retained in /E/.

While this transfer of learning has been demonstrated ex-

perimentally, current models of speech sensorimotor adaptation

cannot account for such generalization. To date, the most well-

developed model of adaptation is found in the DIVA (Direc-

tions Into Velocities of Articulators) model [4, 5]. In the DIVA

model, speech motor control starts with the selection of atomic

“speech sounds,” planning units with 1) motor trajectories and

2) trajectories of expected auditory and somatosensory feed-

back. Auditory errors (mismatches between expected and per-

ceived auditory feedback) result in feedback motor commands

that correct speech in real time. These feedback commands are

subsequently used to update the stored motor trajectory for that

speech sound, driving adaptation. However, since speech units

are independent of each other in DIVA, any learned adaptation

to one speech sound is not predicted to transfer to other units.

To induce meaningful generalization, the model would need to

either infer some relationships among particular speech units or

learn more general mappings between motor goals, motor be-

havior, and sensory output.

The present paper aims to establish the validity of an alter-

native model of sensorimotor adaptation that can computation-

ally account for the generalization pattern observed in labora-

tory settings. It has been suggested that sensorimotor adapta-

tion may arise from changes to internal models; either forward

models that predict the sensory consequences of actions (e.g.,

[6, 7]), inverse models (or, more generally, control policies) that

select appropriate motor commands for desired movements [8],

or both [9]. Motivated by this paradigm, we developed a simple

model of speech production that combines forward and inverse

models. The inverse model generates motor commands based

on desired acoustic targets, while the forward model generates a

prediction of the acoustic outcomes of those motor commands,

which is used to determine the occurrence of auditory errors.

To investigate the feasibility of this approach, we assessed

the ability of this model to reproduce basic behavioral results

of sensorimotor adaptation and its pattern of transfer. We im-

plemented the forward model and the inverse model as two in-

dependent neural networks given the well-established ability of

these networks to learn arbitrary input-output relationships. We

proceeded to conduct two simulation studies to test the response

of the model to an applied perturbation of the perceived vowel

formant frequencies, and observed results consistent with estab-

lished behavioral outcomes.

2. Methods

2.1. Model architecture

Our model has three components (see Fig 1): a plant based on

the Maeda vocal tract model [10], an inverse model which gen-



Figure 1: Model Architecture.

erates Maeda model parameters that correspond to desired F1

and F2 frequencies, and a forward model which predicts the

F1 and F2 frequencies resulting from a particular set of Maeda

parameters. The plant takes in 7 articulatory parameters that de-

fine the 2D shape of the vocal tract in the midsagittal plane and

outputs 5 corresponding formants. Articulatory parameters are

based on the primary principle components of observed vocal

tract deformations in an x-ray dataset of speech [10].

On each trial, the model takes in an acoustic goal (the vec-

tor of formant frequencies fi), representing the desired F1 and

F2 values associated with vowel i. Given this acoustic goal, the

inverse model generates motor commands (a vector of articu-

latory parameters ai) capable of completing this task, which is

passed to both the plant (i.e., the “motor command”) and the

forward model (i.e., “efference copy”), with random additive

noise ni ∼ N(0, 0.05) to simulate motor and prediction noise,

respectively. From this input, the plant produces the formants

f ′

i corresponding to the input articulator values (i.e., speech pro-

duction). At the same time, the forward model predicts the for-

mant output of the plant (f̂i).

2.2. Model training dataset

In order to train the initial forward and inverse models de-

scribed above, we first generated a dataset of Maeda parame-

ter values and the corresponding formant frequencies. Using

the plant, we generated pairs of motor commands (vectors of

articulatory parameters, ai = [ai1, ai2, ...ai7]) and their and

their corresponding acoustic outcomes (first two formant val-

ues, (fi = [fi1, fi2]). Each of the 7 Maeda control parame-

ters was uniformly sampled between -3.0 and 3.0, which corre-

sponds to ±3 standard deviations of each principle component

of movement relative to the x-ray data used to build the plant

model [10]. This dataset was restricted to only those combina-

tions of parameter values with vowel-like acoustics, such that a

synthesized pair of articulatory parameters and vowel formants

Figure 2: Dataset. Forward Model (left); Inverse Model, where

only the “jaw” and “tongue” parameters were free to vary

(right).

Table 1: Forward Model Accuracy. F1 range: 152-878 Hz; F2

range 400-2496 Hz.

Accuracy F1 (Hz) F2 (Hz)

mean 5.251 10.620

std 6.880 16.373

25% 1.543 2.956

50% 3.301 6.468

75% 6.144 12.159

was only included in the dataset if its articulatory parameters re-

sulted in a complete output of all of the first five formant values.

To remove outliers, pairs whose formant values fell further than

3 standard deviations from the F1 or F2 mean were excluded.

The dataset used for training is shown in Figure 2.

2.3. Forward and Inverse models

Before we could examine adaptation, the forward and inverse

models first need to learn the relationship between the articu-

latory parameter values and the resulting formants, analogous

to human participants’ prior knowledge before the adaptation

experiments. In our architecture, the forward model and the in-

verse model were trained as two independent multi-layer neural

networks. The forward training dataset described above (about

58,000 pairs of data) was used to tune the forward model to

learn to predict the formant values associated with particular

Maeda parameter sets. The average absolute prediction error of

the forward model is about 5.25 Hz for F1 and about 10.62 Hz

for F2 (Table 1).

The goal of the inverse model is to generate articulator pa-

rameters that result in desired formant values. However, the

mapping from vowel formants to articulatory parameters in this

plant model is ill-posed (i.e., the often-cited “many-to-one”

mapping problem [11, 12]), making it difficult to build an ac-

curate mapping between the complete input (formants F ∈ R
2)

and output (articulators A ∈ R
7) space. In order to make this

mapping more tractable for the current proof-of-concept work,

we constructed an inverse model that maps the formant values to

articulator parameters in only a restricted subspace of the pos-

sible outputs with equivalent dimensionality to the input space.

To that end, we selected a pair of articulatory parameters most

plausibly related to tongue shape control for vowel produc-

tion. Previous studies on speech motor adaptation and transfer

tested human participants mainly on productions of front vow-

els [13, 3]. Plotting the formants generated by all potential pairs



Table 2: Inverse Model Accuracy. Range for both jaw and

tongue parameters is -3.0 to 3.0.

Accuracy jaw tongue

mean 0.124 0.092

std 0.093 0.069

25% 0.050 0.040

50% 0.107 0.079

75% 0.178 0.128

of articulatory parameters with relatively equivalent error rates,

we found that the combination of the jaw and tongue parameters

produced formants covering the front vowel region and were

thus most suitable for the current modeling task. Thus, in our

final implementation, the inverse model was trained on pairs of

1) formant frequency vectors and 2) articulatory vectors where

the jaw and tongue parameters were sampled randomly, with all

other parameters set to 0.

In addition, although the articulator parameters in the train-

ing data ranged from −3.0 to 3.0, we tuned an L2-regularizer

to penalize large articulator outputs during training (i.e., includ-

ing squared magnitudes of the outputs in the cost function) [14].

Conceptually, this regularization essentially produces the small-

est movements that could result in a particular vowel formant

pattern, consistent with the idea that the speech motor system

minimizes articulatory effort [4, 5]. The absolute prediction er-

rors of the inverse model are about 0.12 for the jaw articulator

parameter and about 0.09 for the tongue articulator parameter.

2.4. Simulating adaptation and transfer

Here, we assess the ability of our model to simulate: 1) adapta-

tion to an auditory perturbation that alters vowel formants and

2) transfer of that adaptation to untrained vowels.

To simulate adaptation, we perturbed the F1 output of the

plant. On each iteration, after the plant produced true formants

f ′

i , we added a perturbation vector p = [75, 0] to this output.

This “perceived” feedback, f ′

i+p, and Maeda motor commands

ai were used to update both the forward and the inverse models.

We note here that the magnitude of the perturbation we used is

somewhat smaller than the one used by [3] (25% of vowel F1).

This was necessary as the restricted model we used, with only

two free articulator parameters, covers only a portion of the full

vowel space (Figure 2). Crucially, we wanted to ensure that the

perturbed formant values f ′

i + p would fall within the region

covered by the training dataset to ensure the inverse model’s

accuracy. If the error detection gate detected an error between

predicted formants f̂i and the produced formants f ′

i (threshold

= 5.88Hz, i.e., mean F1 prediction error of the forward model),

the forward model was updated by the pair (ai, f
′

i + p) and the

inverse model would learn from the equivalent pair (f ′

i +p, ai).
This updated inverse model was then used on the following it-

eration to generate the next articulator vector ai+1 for the (in-

variant) acoustic goal fi+1. Both forward and inverse models

were re-trained during these adaptation iterations with learning

rates 1/10 of the original rates. We additionally added a restric-

tion to this adaptation process to constrain the inverse model’s

output articulator parameters. Recall that the articulatory pa-

rameters in the plant normally range from −3.0 to 3.0. If, after

an update, the output articulator parameters of the inverse model

ai+1 fell out of this range, the model would discard this ai+1,

roll back to the previous state, and generate a new articulatory

Figure 3: Experiment Formants.

vector ai+1(new) instead. Because the articulatory vector ai

had random noise ni on each iteration, even if inverse modeli
was the same as inverse modeli+1, the pair (ai, f

′

i+p) would

be different from (ai+1, f
′

i+1 + p). In other words, the archi-

tecture would not be repeatedly trained on the same data pair.

These roll-backs occurred on a very small proportion of itera-

tions (< 0.1%).

We ran two simulation studies to test the architecture’s re-

sponse to perturbation and the effects on transfer. In Experiment

1, we aimed to replicate the behavioral results of [3]. To reit-

erate, this experiment perturbed participants’ auditory feedback

on their productions of vowels /I/, /E/, and /æ/ and tested transfer

of learning on vowel /E/. Since the formant frequencies corre-

sponding English vowels /I/, /E/, and /æ/ in the plant are on the

edge of the F1-F2 vowel space covered by the inverse model’s

training dataset, to ensure f ′

i±p is within this region, we heuris-

tically defined a line l that is furthest from the region’s left and

right edges. On this line, we picked three (f1, f2) points closest

to the F1-F2 positions of real English vowel /I/, /E/, and /æ/ as

the substitute acoustic goals (Figure 3). We use IH’, EH’ and

AE’, respectively, to denote these targets. In each condition, the

model produced one of IH’, EH’ and AE’ (training vowels) as

the acoustic goal, with the +75 Hz perturbation applied to F1.

This adaptation process was iterated until the forward and in-

verse models showed convergence on a stable mapping (change

in loss less than 1e-4). After the internal models fully adapted

to the applied perturbation, we tested the overall model’s 1) fi-

nal ”behavioral” adaptation to the training vowels and 2) the

transfer of learning to EH’. For each training condition (IH’,

EH’, AE’), we ran 30 adaptation simulations. To ensure the re-

sults from Experiment 1 are not caused by the specific substitute

vowels we used, we ran Experiment 2, where we discretized the

line l into nine F1-F2 training points (v1, v2, ..., v9) and tested

the effects of transfer on the middle vowel (v5).

In each experiment, we repeated each condition (training on

IH’, EH’, or AE’) 30 times. The magnitude of adaptation was

measured as the difference between the acoustic targets (which

remained invariant throughout each simulation) and the unper-

turbed formant output of the Maeda plant after training. Trans-

fer of learning was measured as change in formant outputs for

EH’ after training, expressed as a proportion of the final adap-

tation of the training targets (IH’, EH’, or AE’). The acoustic

similarity between vowels was measured by their Euclidean dis-

tance in F1-F2 space, following [3].

3. Results

We observed gradient transfer of learning in both experiments

(Figure 4 & 5). In all conditions, average transfer of learning



Figure 4: Experiment 1 Results.

Figure 5: Experiment 2 Results.

was smaller when the training vowel is farther away from the

testing vowel. In Experiment 1, less transfer was seen for IH’

(0.57 ± 0.07) than for AE’ (0.71 ± 0.08); both were less than

EH’ (1.00±0.00). All differences were highly significant (over-

all main effect of distance: F (2, 87) = 381.8, p < 0.0001;

all comparisons p < 0.0001). We additionally calculated the

correlation between the magnitude of transfer and the acous-

tic distance between trainer and test vowels. When the corre-

lation was computed from the data of each simulation, trans-

fer of learning is reliably correlated with the Euclidean dis-

tances between the training and testing vowels on the F1-F2

space (r = 0.853, p < 0.01). We did not conduct a sim-

ilar correlation using the computed from means of the three

vowels, as this would result in a correlation based on only 3

datapoints. In Experiment 2, we saw a similar correlation be-

tween the transfer of learning and training-testing vowel dis-

tances (r = 0.718, p < 0.01 when he correlation was com-

puted from the data of each trial; r = 0.988, p < 0.01 when

the correlation was computed from the vowel mean).

4. Discussion

Our current results are based on a highly simplified model and

serves primarily as a proof of concept for this approach. Further

work is needed to assess the ability of this approach to account

for sensorimotor adaptation in a more realistic model. First,

one main limitation of the current architecture is the constraints

imposed on the inverse model. In order to achieve reasonable

accuracy in the inverse model, we reduced the controllable pa-

rameters of the Maeda model to only the jaw and tongue param-

eters, resulting in a reduced vowel space. Better ways of calcu-

lating the inverse model are required expand this to the full set

of Maeda parameters and the complete vowel space. One po-

tential alternative is the invertible neural network (INN) [15].

Instead of solving the forward process and the inverse process

independently, INNs use additional latent variables to capture

information lost in the forward process. Owing to its invertible

architecture, by training the forward process, the inverse pro-

cess can be retrieved. However, modeling speech motor learn-

ing using INN would assume the forward and the inverse pro-

cesses are closely related, which which may not be the case [8].

Second, our current approach uses a fairly simple process to

update internal models. In the current architecture, the output of

the forward model is compared with the (potentially perturbed)

output of the plant. When a discrepancy is detected above the

intrinsic error in the forward model, the paired motor command

and plant acoustics are gated to update both forward and inverse

models. However, this process is likely substantially more com-

plex in the real world. Learning is likely dependent on other

statistical information (such as uncertainty about the source of

sensory errors, e.g., [16]); this could be implemented by the us-

ing the forward model’s prediction to tune the learning rate and

step size of model adaptation. The architecture could also be

expanded to integrate additional components and better reflect

the experience of human speakers. For example, real speak-

ers receive not only auditory but also somatosensory feedback.

Notably, conflicts between these sensory modalities have been

suggested to underlie the partial adaptation typical in human

speech adaptation [17], a feature absent from our current simu-

lations which fully adapted to the applied perturbation.

Third, both forward and inverse models are updated during

the learning phase in our current model. However, the exact

role each of these models plays in human sensorimotor adapta-

tion remains unclear. It is possible that in human speech motor

learning, only one of the models is updated or that they are up-

dated at different rates. If only the forward model is updated, we

hypothesize that no behavioral changes will be observed (since

the selection of motor commands by the inverse model would

remains unchanged); if we only updated the inverse model, we

hypothesize that the model would be less stable, as learning

would no longer be appropriately gated by accurate sensory pre-

dictions. Such predictions remain to be tested.

Lastly, our current model generates a single time point for

each trial (essentially, assuming that vowel production is time-

invariant). Of course, real speech varies substantially over time.

Our current approach could be easily incorporated into models

of online speech production that rely on state feedback control

[18], such as the FACTS model [19]. These models similarly

rely on both forward models and inverse models (or, more gen-

erally, control policies) for motor control; these internal models

could be updated in a similar manner as that proposed here.

Despite these limitations, the current results suggest senso-

rimotor adaptation in speech could plausibly arise from updates

to internal forward and inverse models. Updating such mod-

els leads to adaptation of the trained vowel, as expected. These

changes in behavior also transfer to untrained vowels as a func-

tion of the acoustic distance between training and test vowels,

consistent with behavioral results in human speakers.
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