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Abstract
Human perception depends upon internal representations of the environment that help to organize the raw information avail-
able from the senses by acting as reference patterns. Internal representations are widely characterized using reverse correla-
tion, a method capable of producing unconstrained estimates of the representation itself, all on the basis of simple responses 
to random stimuli. Despite its advantages, reverse correlation is often infeasible to apply because of its inefficiency—a 
very large number of stimulus–response trials are required in order to obtain an accurate estimate. Here, we show that an 
important source of this inefficiency is small, yet nontrivial, correlations that occur by chance between randomly generated 
stimuli. We demonstrate in simulation that whitening stimuli to remove such correlations before eliciting responses provides 
greater than 85% improvement in efficiency for a given estimation quality, as well as a two- to fivefold increase in quality 
for a given sample size. Moreover, unlike conventional approaches, whitening improves the efficiency of reverse correlation 
without introducing bias into the estimate, or requiring prior knowledge of the target internal representation. Improving the 
efficiency of reverse correlation with whitening may enable a broader scope of investigations into the individual variability 
and potential universality of perceptual mechanisms.
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Reverse correlation is a powerful method for characteriz-
ing the underlying mechanisms of perception (Ahumada Jr 
& Lovell, 1971; De Boer & Kuyper, 1968). It has a long 
history of use in characterizing the latent representations 
encapsulated in neural tuning (e.g., receptive fields; Ringach 
& Shapley, 2004; Nishimoto et al., 2006), and has more 
recently become a primary method for inferring cognitive 
representations that drive the top-down processes of per-
ception (e.g., face or phoneme recognition; Ahumada Jr & 
Lovell, 1971; Gosselin & Schyns, 2001; Jäkel et al., 2009; 
Neri & Levi, 2006; Smith et al., 2012; Varnet et al., 2013a, 
2013b), and even to estimate representations associated with 
abstract psychosocial categories (e.g., “male” vs. “female” 
faces; Brinkman et al., 2017; Mangini & Biederman, 2004; 

Moon et al., 2020; Ponsot et al., 2018). Indeed, the method 
has broad applicability for characterizing many aspects of 
neurological, cognitive, or psychological function and is 
closely related to the widely used “white noise approach” 
to characterizing physiological (Marmarelis & Marmarelis, 
1978) and engineering systems (Volterra, 1930; Wiener, 
1958; Ljung, 1999).

In reverse correlation, stimulus–response data are elicited 
via the presentation of richly varying stimuli. For exam-
ple, in psychophysical applications of reverse correlation, 
subjects may be presented with images composed of white 
noise and asked to make subjective “yes/no” responses 
about whether they perceived the presence of a specific 
signal, such as a face (e.g., Smith et al., 2012). Latent per-
ceptual representations that optimally explain the pattern 
of responses can then be estimated by regressing subject 
responses against the stimuli over many trials, with the 
regression coefficients constituting an estimate of the rep-
resentation itself.

However, current formulations of reverse correlation are 
widely known to be inefficient in the sense that many stimu-
lus–response trials are required to achieve desirable esti-
mation accuracies (Mineault et al., 2009). This inefficiency 
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severely limits the feasibility of conducting reverse correla-
tion studies to experimental protocols where subject par-
ticipation can be maintained over extended timelines. Long 
protocols may mean that very few participants can be exam-
ined in any given study, and thus any analyses and inferences 
regarding possible universal aspects of human cognitive rep-
resentation are severely limited. For example, in a notable 
study on representations of orthographic characters, Gos-
selin and Schyns (2003) collected 20,000 trials from three 
subjects over a period of two weeks. At the same time, inef-
ficiency is an important consideration even for applications 
where collecting a large number of trials is feasible, because 
its existence implies that higher accuracies may be possible 
for a given number of trials if efficiency can be improved.

Attempts to improve the efficiency of reverse correlation 
can be broadly characterized as either retrospective or prospec-
tive. Retrospective approaches impose some constraints on the 
inferred representations at the time of estimation, after data 
collection is complete. One common example of this approach 
is smoothing (e.g., low-pass filtering) the raw estimates (Gos-
selin & Schyns, 2003), which stems from the assumption that 
high-frequency information in the estimate is irrelevant noise. 
It has also been shown that the assumption of sparsity—i.e., 
that the target representation can be sparsely represented in 
some basis—can lead to dramatic improvements in efficiency 
when methods that incorporate this assumption are employed 
in the estimation process. For example, Mineault et al. (2009) 
showed efficiency improvements using generalized linear mod-
els with sparsity priors, and Roop et al. (2021) employed a 
compressive sensing framework with L1 optimization.

On the other hand, prospective approaches to improv-
ing efficiency attempt to condition the stimuli in some way, 
prior to their presentation as part of the data collection. The 
most common example of this approach is to assume that 
the target has a certain form, even a very generalized one, 
and then construct stimuli that vary in relation to that form 
in specified ways. For example, approaches to psychoso-
cial aspects of human faces (Mangini & Biederman, 2004; 
Dotsch & Todorov, 2012; Brinkman et al., 2017; Moon 
et al., 2020; Daube et al., 2021; Peterson et al., 2022; Zhan 
et al., 2021) have often proceeded from the assumption that 
representation of a trustworthy face is similar to a neutral 
face, and consequently generated stimuli by adding noise to 
an exemplar image of a neutral face. A similar approach has 
been taken in several auditory studies, in which stimuli were 
generated by adding noise to recordings of natural speech 
(Varnet et al., 2013a, 2013b; Varnet et al., 2015; Varnet 
et al., 2016). Incorporating prior knowledge about the tar-
get representation into the stimuli improves efficiency by 
limiting variation along dimensions that are assumed to be 
irrelevant to the representation.

Whether retrospective or prospective, existing approaches 
to improving the efficiency of reverse correlation all function 

on the basis of some assumed knowledge regarding the tar-
get representation—i.e., that it has some general form, or is 
smooth or sparse—which is then incorporated either into 
the stimuli, in prospective approaches, or into the estima-
tion process, in retrospective approaches. The assumed 
knowledge incorporated into existing approaches, even if 
well justified, will exert a direct influence on estimates of 
the representation, limiting the essential power and promise 
of reverse correlation, which may be viewed as stemming 
from its ability to provide estimates that are unconstrained 
and unbiased. If, on the other hand, such assumed knowledge 
is not well justified, then it will compromise the quality or 
interpretation of the estimate by introducing bias a priori.

Rather than relying on assumed knowledge regarding the 
target representation, the present work attempts, for the first 
time, to develop a prospective approach that instead condi-
tions reverse correlation stimuli such that their general sta-
tistical properties are more favorable for efficient estimation 
of any arbitrary representation, without any a priori assump-
tions about the nature of that target. The present approach 
begins only with the knowledge that a randomly generated 
set of stimuli will be expected to contain pairs of stimuli 
that are correlated by chance, especially under the condi-
tions in which reverse correlation is typically applied—i.e., 
many stimuli that are low- to moderate-dimensional in size. 
Such correlation may be expected to decrease the effective 
sample size (Kish & Frankel, 1969; Liang & Zeger, 1993) 
of reverse correlation experiments using those stimuli by 
making observations overlapping and mutually predictable. 
Here, we prospectively employ whitening to improve the 
statistical properties of reverse correlation stimuli by elimi-
nating covariance among the same. Whitening, sometimes 
called sphering, is a well-known statistical transformation—
named in reference to white noise, which is composed of 
uncorrelated random variables—that eliminates covariance 
in multivariate data. We develop and present a mathematical 
justification for the effectiveness of stimulus whitening, and 
we demonstrate empirically that whitening can dramatically 
improve the efficiency of reverse correlation.

Background

Reverse correlation

Reverse correlation follows, in essence, a regression model 
(see Fig. 1). Subject responses, y ∈ {−1, 1} are assumed to 
be generated by a process following

where the subject’s internal representation is a p-by-1 vector 
β, the n stimuli corresponding to n trials are contained in an 

(1)y = DX� + �,
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n-by-p matrix X, and ε is some noise. The matrix D, where 
Dii = 1/|Xiβ| for row i of X, acts to binarize the responses to 
values −1 (a negative response) and 1 (a positive response), 
equivalent to applying the signum function. Estimates of β 
can be obtained using the normal equation,

but are often made (e.g., Ahumada, 1996; Gosselin & 
Schyns, 2003; Murray, 2011) using the simplified formula

under the assumption that, across many stimuli, the columns 
of X will be nearly uncorrelated, meaning that XTX = I, the 
identity matrix. Although this assumption may become inap-
propriate for small values of n, the value of n is typically 
large in reverse correlation experiments and, even so, the 
full normal equation can be used to compensate for any cor-
relations that do exist among the columns of X.

Efficiency of reverse correlation

Crucial to improving the efficiency of reverse correlation is 
the ability to quantify estimation quality. Here, we quantify 
estimation quality by applying Pearson’s product–moment 
correlation coefficient between the internal representation, 
β, and the estimate of that representation, 𝛽  , using the fol-
lowing equation:

where C = I −
1

p
1 is the centering matrix and 1 is a matrix 

of all ones. Note that this metric of estimation quality 
assumes, as is typical in reverse correlation experiments, that 
internal representations encode only the relative values of 

(2)𝛽 =
(
XTX

)−1
XTy,

(3)𝛽 =
1

p
XTy,

(4)
r
(
𝛽, 𝛽

)
=

(C𝛽)T
(
C𝛽

)

√
𝛽TC𝛽

p

√
𝛽TC𝛽

p

the signal and not its overall magnitude. Given this metric 
of estimation quality, the goal of improving efficiency can 
be stated more precisely as maximizing the value of r

(
𝛽, 𝛽

)
 

while limiting the number of trials n.

Expected correlation of random stimuli

In typical reverse correlation experiments, n stimuli of 
dimensionality p are randomly generated and presented to 
the subject in sequence. Here, we consider the case where 
all n stimuli are generated prior to initiation of the experi-
ment as an n-by-p matrix X. If the stimuli are images, 
for instance, the rows of X represent images composed 
of p pixels, which can be reshaped into the desired two-
dimensional format prior to presentation. Each element 
of X is drawn from a normal distribution with mean zero 
and variance 1:

Equivalently, the stimuli are generated as the n rows 
of X, where each row is drawn from a p-variate normal 
distribution with mean zero and covariance matrix V = I:

To examine the similarity of randomly generated stimuli, 
we begin by considering the row-wise scatter matrix S of X, 
which contains the inner product between all pairs of stimuli. 
The matrix S is known to follow a Wishart distribution:

where V is a scale matrix and p is the degrees of freedom 
of the distribution. Accordingly, the mean of S is pV = pI, 
which has off-diagonal elements of zero, indicating that the 
expected similarity between stimuli across experiments is 
nil. However, the variance of elements of S is

(5)Xij ∼ N(0, 1).

(6)Xi ∼ Np(0,V).

(7)S = XXT ∼ Wp(V , p),

Fig. 1   In reverse correlation, the vector of subject responses (y) is 
modeled as resulting from the multiplication of a latent representa-
tion vector (β) and a stimulus matrix (X). This can be thought of as 

calculating the similarity between the latent representation and a vec-
tor representation of each presented stimulus. To estimate the latent 
representation, the responses are regressed against the stimuli
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for elements vij of V. Assuming once again that V = I, the 
above expression simplifies to

indicating that the similarities between stimuli will be 
expected to vary substantially between experiments, and 
therefore remain nontrivial for any given experiment.

Extending this analysis beyond the scatter matrix to the 
covariance matrix of X can help to clarify the expected mag-
nitude of similarities between stimuli irrespective of their 
dimensionality. The covariance matrix can be written as:

assuming for the sake of simplicity that the rows of X are 
mean-zero. One can find the variance of an element of the 
covariance matrix, Σij, in the case where V = I, as:

by observing that Var
(

Sij

p−1

)
=

Var(Sij)
(p−1)2

 . The variance of ele-
ments Σij indicates, as above, that the similarities between 
stimuli are expected to be nontrivial for any given experi-
ment, when those stimuli are composed simply of elements 
drawn from the normal distribution. Examining the covari-
ance matrix clarifies that this expectation is especially 
important when the dimensionality of the stimuli is low (i.e., 
p is small), which is often the case in reverse correlation 
experiments. The expected variance of elements Cij, and 
associated similarity between stimuli, can be eliminated 
through the process of whitening. Below, we describe how 
stimuli can be whitened, and provide a mathematical justi-
fication for why whitening is expected to improve estimation 
quality and the efficiency of reverse correlation.

Method

Whitening and estimation quality: Mathematical 
justification

Our goal here is to show that whitening the rows of the n-by-
p matrix of the stimuli, X, will maximize the correlation 
between β and 𝛽  . To clarify the role of X, we proceed to 
write Eq. 4 in terms of only X and β. Substituting values for 
𝛽  and y from the regression equations, stated above, the 
numerator can then be rewritten as 1

p
(DX�)TXC� . Using 

these same observations, the denominator can be rewritten 

(8)Var
(
Sij
)
= p

(
v2
ij
+ viivjj

)
,

(9)Var
(
Sij
)
= p,

(10)Σ =
S

p − 1
=

XXT

p − 1
,

(11)Var
(
Σij

)
=

p

(p − 1)2
,

as 
√

�TC�

p

√
(DX�)TXCXT (DX�)

p
 . Together, these alterations yield 

the following equation:

As mentioned above, we assume that internal representa-
tions encode only the relative values of the signal and not 
its overall magnitude. Therefore, it is reasonable to consider 
that mean(β) = 0 and that ‖β‖2 = 1, which allows us to fur-
ther simply Eq. 12, becoming:

because Cβ = β and βTCβ = 1 under the above assump-
tions, respectively. Again, the goal is to maximize the value 
of this equation for an arbitrary value of β, which can be 
done by maximizing the numerator and/or minimizing the 
denominator.

The numerator of Eq. 13 effectively compares the simi-
larity, by way of taking the inner product, between β and 
each stimulus, and then sums the absolute values of those 
comparisons. This value is maximized when rows of X are 
equal to ±β, and therefore cannot be optimized without prior 
knowledge of the value of β. Assumption of prior knowledge 
of the value of β is an approach often taken in the literature 
for improving the efficiency of reverse correlation experi-
ments. However, such knowledge will always introduce esti-
mation bias a priori.

The denominator of Eq. 13 clearly depends upon the simi-
larity of rows of X, owing to the calculation of the centered 
row-wise scatter matrix XCXT , but is more difficult to ana-
lyze than the numerator. To simplify the analysis, we assume 
that for each row i of X, mean

(
Xi

)
= 0, and that ‖‖Xi

‖‖2 = 1 , 
both of which are similar to the assumptions made above in 
that they are consistent with the idea that internal representa-
tions encode only the relative values of the signal and not its 
overall magnitude. Given these assumptions, it can be easily 
verified that when X has been whitened with respect to its 
rows, meaning that XCXT = I , the denominator of Eq. 13 is 
equal to 

√
n . It can also be easily verified that when X is anti-

white with respect to its rows—i.e., all off-diagonal elements 
of XCXT are equal to ±1 (e.g., XCXT = 1)—the value of the 
denominator in Eq. 13 is equal to 

√
nn = n . Therefore, using 

whitened stimuli is much more favorable than using stimuli 
that have the opposite statistical properties, because 

√
n < n.

The expected value of the denominator for typical stim-
uli—i.e., matrix X such that Xij~N(0, 1)—was estimated in 
this work through a series of numerical simulations. In each 

(12)
r
(
𝛽, 𝛽

)
=

(DX𝛽)TXC𝛽

p

√
𝛽TC𝛽

p

√
(DX𝛽)TXCXT (DX𝛽)

p

(13)

r
�
𝛽, 𝛽

�
=

(DX𝛽)TX𝛽
√
(DX𝛽)TXCXT (DX𝛽)

=
𝛽TXTDTX𝛽

��
𝛽TXTDT

�
XCXT (DX𝛽)
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of these simulations, the value of the above denominator was 
evaluated for a randomly generated X and β~N(0, 1). The 
values of n (the number of stimuli) and p (the dimensionality 
of the stimuli) were assigned to 8, 16, 32, 64, 128, or 256, 
such that all combinations of n and p were considered. For 
each unique combination of n and p, 1000 total simulations 
were conducted. It was found that, for a unique value of n 
and p, the mean value of the denominator was well described 

by the formula 
√

n

(
n

p
+ 1

)
 . Note that the value of this for-

mula exists between 
√
n and n for most relevant values of n 

and p. It is higher than 
√
n for all values of n, p ≥ 1, and 

lower than n for all values of n other than n ≫ p, or more 
specifically all values of n

p
< n , and then approximately 

equal to n. Furthermore, the denominator is equal to 
√
n ≈

�
n

�
n

p
+ 1

�
 when p ≫ n, which is consistent with the 

expectation that rows with many elements (i.e., stimuli of 
high dimensionality) will be less covariant on average. Criti-
cally, the fact that the denominator value from this formula 
is higher than 

√
n for all reasonable values of n and p con-

firms that whitening the matrix X can be expected to maxi-
mize r

(
𝛽, 𝛽

)
 , and therefore estimation quality.

Whitening and estimation quality: Empirical 
demonstration

To assess whether the theoretical efficiency improvements 
associated with whitening the stimuli could be observed 
empirically, a series of simulations were conducted in MAT-
LAB to assess estimation quality as a function of the number 
of trials. The simulations were designed to follow Gosselin 
and Schyns (2003), in which one target of study was the inter-
nal representation of the printed letter “S.” In this study, three 
subjects completed 20,000 trials, in which subjects were 
shown random images (i.e., with pixel values drawn from a 
Bernoulli distribution) and asked to indicate, with a simple 
yes/no response, whether the image contained the letter “S.” 
Each subject’s responses were used to generate an estimate 
using reverse correlation. One subject’s estimated representa-
tion of “S” (shown in Fig. 3a) was used as the internal repre-
sentation, β, in the simulations described here. The “S” was 
recreated by horizontally scaling a lowercase “s” in Verdana 
font, as described in Gosselin and Schyns (2003).

For each simulation, a stimulus matrix of normally dis-
tributed random values of size n-by-p was generated as 
described in Eq. 5. This stimulus matrix was then either 
whitened (see Eq. 15) or left unwhitened. Responses were 
generated using the assumed response-generating process 
described in Eq. 1. Representation estimates were obtained 
using the typical regression-based reverse correlation pro-
cedure described in Eq. 3. Simulations were conducted with 
values of n ranging from 100 to 10,000 (specifically, n = 100 

to 500 in increments of 100, n = 500 to 5000 in increments 
of 500, and n = 5000 to 10,000 in increments of 1000), and 
values of p ranging from 100 to 10,000 (specifically, p = 
102, 202, 302, …, 1002), for all combinations of values for 
n and p. At each combination of n and p, a total of 60 inde-
pendent simulations were conducted (30 with unwhitened 
stimuli, and another 30 with whitened stimuli), and the mean 
estimation quality and 95% confidence intervals (CI) were 
calculated separately for whitened and unwhitened stimuli. 
As above, estimation quality was defined as r

(
, ̂

)
.

Whitening procedure

For an unwhitened stimulus matrix Xu of size n-by-p, the 
whitening matrix W may be defined as follows:

where C is the centering matrix. Other whitening matrices 
are possible (see, e.g., Kessy et al., 2015). This specific whit-
ening procedure is sometimes called Mahalanobis whiten-
ing, or ZCA (zero-phase component analysis) whitening, and 
can be seen as inverting the matrix square root of the row-
wise covariance matrix of Xu. Using the whitening matrix, 
one can calculate the matrix Xw = CXT

u
W  , which is the data 

matrix Xu with whitened rows.
Note that when the value of n becomes very large, numer-

ical difficulties in the whitening process may arise from the 
need to invert the correspondingly large matrix 

(
XuCX

T
u

p−1

)
 , 

which is of size n-by-n. This can be overcome, and the range 
of possible values of n expanded, by introducing a slight bias 
to the diagonal of the matrix to be inverted of the form:

where the value of ε is small. This is conceptually similar 
to ridge regression.

The regularization approach presented in Eq. 15 can 
be justified as follows. As suggested in Eq. 6, the rows of 
X are consistent with a multivariate normal distribution, 
their values having been drawn from Np(0, I) . Consider 
that the rows of X were drawn, instead, from Np(0,�) , 
with unknown covariance Σ. In that case, we would like 
to determine the expected value of Σ given the stimuli 
X. The conjugate distribution for such data is commonly 
taken to be the inverse Wishart distribution, with the prior 
p(�) = W−�(Ψ, �) , for scale matrix Ψ and degrees of free-
dom υ, and posterior p(�|X) = W−1(A + Ψ, n + �) , where 
A = XX� . The mean of the inverse Wishart distribution is 
Ψ/(υ − p − 1), implying that the posterior expectation of Σ 

(14)W =

(
XuCX

T
u

p − 1

)−
1

2

(15)W =

(
XuCX

T
u

p − 1
+ �I

)−
1

2
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is (A + Ψ)/(n + υ − n − 1). If we know that υ = p and Ψ = I, 
then it will be the case that the posterior expectation of 
Σ is 

(
XXT + I

)
∕(p − 1) = XX�∕(p − 1) + �I  , where ϵ = 1/

(p − 1). Therefore, based on this argument, and for the sake 
of consistency, we implement whitening using Eq. 15 for 
all values of n, with ϵ = 1/(p − 1).

Functions implemented in MATLAB code for stimulus 
whitening (Eq. 15), reverse correlation (Eq. 3), and simu-
lated subject response generation (Eq. 1) are available at 

https://​github.​com/​alamm​ert/​stimu​lus-​white​ning, along with 
a MATLAB script constituting a working example exempli-
fying their use.

Results

Figure 2 shows estimation quality, r
(
𝛽, 𝛽

)
 , as a function of 

number of trials (n = 1000, 2000, 3000, 4000, 5000) and 
dimensionality of the stimulus (p = 900, 1600, 2500) with 
mean and 95% CI shown. Accuracies using whitened and 
unwhitened stimuli are shown separately. Mean estimation 
quality can be seen to increase with the increasing value of n, 
while mean quality can be seen to decrease with the increas-
ing value of p. Mean estimation quality was found to be 
higher and variability in quality was found to be lower using 
whitened stimuli versus unwhitened stimuli at all values of n.

Figure 3 shows estimation quality, r
(
𝛽, 𝛽

)
 , as a function 

of the entire considered range for number of trials (n = 100 
to 10,000) and dimensionality of the stimulus (p = 100 to 
10,000), with colored panels and contour lines indicating 
the mean estimation quality for a given value of n and 
p. Accuracies using unwhitened and whitened stimuli are 
shown in figure panels a and b, respectively. Figure panel 
c shows the difference in estimation quality when using 
whitened versus unwhitened stimuli. As in Fig. 2, mean 
estimation quality can be seen to increase with the increas-
ing value of n, and decrease with the increasing value of 
p. It was found that whitening increased mean estimation 
accuracy for all values of n and p. The increase in estima-
tion quality due to whitening was found to be highest when 
the ratio of n and p was close to unity.

Fig. 2   Estimation quality (mean and 95% CI) for both random, 
unwhitened stimuli (dashed lines) and whitened stimuli (solid lines) 
as a function of number of stimuli presented (n). The dimensionality 
of the stimulus (p) has an effect that is shown at corresponding values 
of n, indicated by shaded lines and the value of p in text above each 
line

Fig. 3   Mean estimation quality for both random, unwhitened stimuli 
(panel a) and whitened stimuli (panel b) as a function of number of 
stimuli presented (n) and the dimensionality of the stimulus (p). The 
difference in estimation quality using whitened versus unwhitened 

stimuli is shown in panel c. Estimation quality at a given value of n 
and p is indicated by shading between equal-quality isolines, as well 
as text labels that indicate the minimum estimation quality within a 
shaded area.

https://github.com/alammert/stimulus-whitening
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Additional simulations were conducted to determine the 
number of trials required, using unwhitened stimuli, to reach 
mean quality equivalent to 5000 trials using whitened stim-
uli - i.e., when the value was at least 𝑟 = 0.89. The simulation 
procedure was repeated at increasingly higher values of n, in 
increments of 1000, until the estimation quality using unwhit-
ened stimuli reach this level. It was found that 40,000 trials 
were required to reach this level of quality, which represents 
an effective reduction in the number of trials of approximately 
87.5%.

To facilitate a qualitative comparison of estimation 
quality relative to both the impact of stimulus whitening 
and the number of stimuli, additional simulations were 
conducted to contrast estimates obtained from three condi-
tions: (1) using 5000 unwhitened stimuli, (2) using 1300 
stimuli, which was found by interpolating the results in 
Fig. 2 to produce equivalent quality to 5000 unwhitened 
stimuli, and (3) using 5000 whitened stimuli. Estimates 
obtained from these conditions are shown in Fig. 4. The 
code available at https://​github.​com/​alamm​ert/​stimu​lus-​
white​ning conducts simulations under these conditions, 
and produces a version of Fig. 3 using randomly generated 
stimuli.

Discussion and conclusion

The mathematical justification provided above revealed that 
the two major sources of variability in estimation quality, as 
quantified by correlation between the estimate and the target 
representation, are (a) the degree of correlation among stim-
uli (the denominator in Eq. 13) and (b) the degree of cor-
relation between the stimuli and the target (the numerator in 
Eq. 13). As such, lowering the degree of correlation among 
stimuli is expected in general to increase estimation qual-
ity. Whitening the stimuli is a process designed to accom-
plish exactly this goal, and should be expected, therefore, to 
improve estimation quality in reverse correlation.

Empirical results from the simulation study presented 
here indicate that the efficiency of reverse correlation is 
greatly improved by whitening stimuli before presenting 
them to subjects. For a given number of trials, estimation 
quality was observed to improve substantially when whit-
ened stimuli were used, as compared with stimuli that were 
randomly generated and left unwhitened. This improve-
ment was observed across the entire considered range for 
number of trials and dimensionality of the stimulus, and all 

Fig. 4   Comparison of reconstruction quality using conventional ran-
dom stimuli and whitened stimuli. Example random/unwhitened stim-
uli and whitened stimuli are shown in b and c, respectively. Estimates 
of the template image a are shown in d–f, with the stimulus type and 

number of stimuli used (n) indicated above those images, and the cor-
relation coefficient between the template and the estimate (r2, an indi-
cation of estimation quality) shown below

https://github.com/alammert/stimulus-whitening
https://github.com/alammert/stimulus-whitening
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combinations thereof. Furthermore, when using whitened 
stimuli, the number of trials required to produce estimates of 
equivalent quality was substantially reduced, as well.

The effect of whitening for removing chance correlations 
between stimuli varies as a function of the dimensionality 
of the stimulus (p). Correlations of substantial magnitude 
between stimuli are more likely when p is small, as indicated 
by Eq. 11, in which the variance of elements of the row-
wise covariance matrix is shown to increase as p decreases. 
Therefore, it is more likely that whitening will make a larger 
adjustment to randomly generated stimuli when the dimen-
sionality of those stimuli is low. By contrast, the number of 
stimuli (n) is not expected to influence the size of adjust-
ments to randomly generated stimuli, other than possibly by 
creating numerical problems—mentioned in the methods—
associated with the need to invert an n-by-n matrix when n 
is very large. Based on this reasoning, one might expect the 
advantage of whitening regarding estimation accuracy to be 
maximized when p is small, regardless of the value of n. In 
practice, however, this is only true when n is also small. If 
p is quite small relative to n, then the estimation problem is 
not difficult, and estimation quality will be excellent using 
either whitened or unwhitened stimuli (i.e., “ceiling effects” 
are observed). Conversely, the advantage of whitening would 
be expected to shrink when p is large. In practice, this is 
only true when n is correspondingly large. If p is large rela-
tive to n, then the estimation problem is extremely difficult, 
and estimation quality will be poor whether whitening is 
employed or not. Thus, whitening performs best when p is 
small, unless n is considerably smaller than p. The advantage 
of whitening tends to disappear when n becomes much larger 
than p due to ceiling effects.

The empirical results also revealed that variance in esti-
mation quality is sharply reduced by whitening stimuli. 
Again, the mathematical justification above revealed that 
the degree of random correlation among stimuli is a major 
source of variability in estimation quality. By eliminating 
any such correlation, whitening leaves only random correla-
tion between the stimuli and the target as a source of varia-
tion in estimation quality.

Finally, the empirical results reinforce the notion, widely 
understood by reverse correlation practitioners, that estima-
tion quality increases with the increasing number of trials 
and decreasing dimensionality of the stimulus. In broad 
terms, the best results from a reverse correlation experi-
ment, regardless of whether whitening is employed, would 
therefore be expected when a large number of trials are for 
a target and stimuli that are low in dimension.

Reverse correlation has the potential to uncover latent 
representations underlying perception and transform our 
understanding of perceptual mechanisms at various lev-
els of investigation: neural, cognitive, and psychological. 
However, in order for this potential to be fully realized, the 

fundamental inefficiency of reverse correlation paradigms 
must be overcome so that the breadth of its application may 
be increased. Whitening stimuli provides for more accurate 
estimates with fewer trials than simply using random stimuli, 
as in traditional approaches. Moreover, whitening does not 
impose any prior assumptions on the estimation process 
regarding the target representation. The dramatic improve-
ments in efficiency demonstrated here can enable researchers 
to access the promise of reverse correlation by broadening 
its scope of application, allowing for studies to examine a 
wider array of representations within one individual, and 
also allowing deeper investigations into individual vari-
ability in, and potentially universal aspects of, perceptual 
representations.
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