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Abstract

Upon perceiving sensory errors during movements, the human sensorimotor system

updates future movements to compensate for the errors, a phenomenon called sensorimo-

tor adaptation. One component of this adaptation is thought to be driven by sensory predic-

tion errors–discrepancies between predicted and actual sensory feedback. However, the

mechanisms by which prediction errors drive adaptation remain unclear. Here, auditory pre-

diction error-based mechanisms involved in speech auditory-motor adaptation were exam-

ined via the feedback aware control of tasks in speech (FACTS) model. Consistent with

theoretical perspectives in both non-speech and speech motor control, the hierarchical

architecture of FACTS relies on both the higher-level task (vocal tract constrictions) as well

as lower-level articulatory state representations. Importantly, FACTS also computes sen-

sory prediction errors as a part of its state feedback control mechanism, a well-established

framework in the field of motor control. We explored potential adaptation mechanisms and

found that adaptive behavior was present only when prediction errors updated the articula-

tory-to-task state transformation. In contrast, designs in which prediction errors updated for-

ward sensory prediction models alone did not generate adaptation. Thus, FACTS

demonstrated that 1) prediction errors can drive adaptation through task-level updates, and

2) adaptation is likely driven by updates to task-level control rather than (only) to forward

predictive models. Additionally, simulating adaptation with FACTS generated a number of

important hypotheses regarding previously reported phenomena such as identifying the

source(s) of incomplete adaptation and driving factor(s) for changes in the second formant

frequency during adaptation to the first formant perturbation. The proposed model design

paves the way for a hierarchical state feedback control framework to be examined in the

context of sensorimotor adaptation in both speech and non-speech effector systems.
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Author summary

When we move, our brain predicts the sensory feedback that would result from the move-

ment, and can quickly adjust future movements based on any sensory prediction errors—

differences between the predictions and actual sensory feedback. This learning process,

sensorimotor adaptation, has been extensively studied in many movements (e.g., walking,

reaching, speaking), but its underlying mechanisms remain largely unclear. Here, we

examined mechanisms driving speech adaptation in response to altered auditory feedback

using the FACTS model, a hierarchical state feedback control model of speech in which a

high-level controller achieves speech goals (e.g., constrictions of the vocal tract) by direct-

ing a low-level controller that moves the speech articulators (e.g., positions of the jaw and

the tongue). We demonstrated that prediction errors can drive adaptation through

changes in high-level control, but not solely through changes in predictions of movement

outcomes or low-level control. In addition to replicating multiple key features of sensori-

motor adaptation in speech, our simulations also generated potential new explanations

for phenomena that are currently poorly understood. Importantly, given that our model

design is closely aligned with widely accepted motor control frameworks outside of

speech, these results have the potential to be broadly applicable to non-speech motor sys-

tems as well.

Introduction

The human sensorimotor system has the remarkable ability to update future movements in

response to environmental changes. In the context of speech production, such learning abili-

ties have been well demonstrated by auditory-motor adaptation, in which participants modify

their subsequent speech production after their auditory feedback is experimentally altered by

shifting vowel formants (vocal tract resonances that distinguish vowels from one another) or

vocal pitch. Speech auditory-motor adaptation remains a topic of great interest (see [1] for an

extensive review on formant adaptation studies) and has been utilized to investigate speech

motor control in both healthy (e.g., [2–4]) and clinical populations (e.g., cerebellar ataxia, [5];

Parkinson’s disease, [6]; stuttering, [7]).

Although sensorimotor adaptation in speech has been extensively investigated, the

underlying mechanisms driving this learning are not firmly established. According to stud-

ies of upper limb reaching movements, visuo-motor adaptation (i.e., adaptation to perturbed

visual feedback) can be driven by two types of errors: sensory prediction error and perfor-

mance (or task) error. Sensory prediction error is the discrepancy between the actual sensory

consequences and those predicted based on motor efference copy (e.g., [8]). It is thought

that sensory prediction errors contribute to the implicit component of learning, which

occurs without learner awareness. On the other hand, performance error (or task error) is

the discrepancy between the outcome of the movement and the intended goal or target of

the movement. This type of error occurs with the awareness of the learner and involves strat-

egy use, contributing to the explicit component of learning (e.g., [9]). More recent studies

have, however, demonstrated that task errors can also drive implicit learning ([10–15], also

see Discussion).

Interestingly, whereas both components of learning contribute to visuo-motor adaptation,

there are multiple lines of evidence suggesting that speech auditory-motor adaptation may be

driven entirely by the implicit component. The most convincing evidence for the implicit
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nature of auditory-motor adaptation is that participants are completely unaware of their adap-

tive behaviors (e.g., [16–18]). In fact, participants show adaptation even when they are specifi-

cally instructed to avoid changing their productions [17] and continue to be unaware of their

adaptation even when asked, after every utterance, whether and how they are changing their

speech [19]. Lametti and colleagues [20] also discovered that even when cognitive load was

increased by a dual-task paradigm, presumably affecting ongoing explicit processes, the

amount of auditory-motor adaptation remained unchanged even as visuo-motor adaptation

was affected. The implicit nature of auditory-motor adaptation is also supported by the find-

ings demonstrating that speech adaptation can be removed by adding even a small amount of

delay (e.g., 100 ms) in auditory feedback [21, 22], given that adding delays in sensory feedback

has been shown to disturb implicit learning, but not explicit learning [23–25]. Based on these

pieces of evidence, multiple research groups have postulated that auditory prediction errors—

discrepancies between predicted and actual auditory feedback—drive auditory-motor adapta-

tion (e.g., [19, 20, 26, 27]).

However, prediction errors themselves cannot yield adaptation if the controller does not

change its future productions. Thus, a crucial mechanism involved in sensorimotor adaptation

is how error signals influence the controller (i.e., the mechanism that is responsible for gener-

ating appropriate motor output) to issue modified or learned motor outputs in the subsequent

movements. One possibility is that sensory errors drive corrective motor commands which are

then integrated into the controller for future productions [28–31]. However, sensory errors

can update future behaviors without online feedback-based correction in both speech [7] and

non-speech [32, 33] adaptation.

Previous studies have also suggested that the controller may be an inverse of an internal

model that can predict sensory consequences based on a given motor command (i.e., an

inverse of a forward model) and it may be updated to produce learned behaviors whenever

its paired forward model is updated from error signals (e.g., [34]). An alternative perspective

is that sensorimotor adaptation can be driven by updating the controller directly with some

type of learning (or error) signals. According to this idea, the controller’s control policy (or

control law) may be directly updated from the learning signals. Even though this learning

mechanism was originally thought to be responsible for other types of motor learning such

as model-free learning (see [35]), a recent upper limb adaptation study using mirrored feed-

back suggested that direct updates to the control policy, but not updates to the forward mod-

els, can explain adaptation behavior [36]. In the context of speech auditory-motor

adaptation, it remains largely unclear whether the implicit adaptation process involves for-

ward model-based updates or direct control policy updates. To date, only one study has

examined whether the paired inverse and forward models could yield auditory-motor adap-

tation via a computational model [37], but due to its simplified proof-of-concept design, the

model could not simulate a detailed account of sensorimotor processes involving prediction

errors and state estimation.

Although it remains possible that other types of errors such as task errors may also drive

implicit speech adaptation, as an initial step toward understanding mechanisms underlying

the learning process, we investigated potential mechanisms through which auditory prediction

errors can drive adaptation using our recently introduced computational model of speech,

FACTS (Feedback-Aware Control of Tasks in Speech, [38]). FACTS is a fully developed model

of real-time sensorimotor control in speech based on state feedback control [39, 40], a well-

established framework in the field of general (non-speech) motor control (e.g., [41–45], but

also see [46] for speech production). Crucially, the predictive nature of the state feedback con-

trol architecture in FACTS allows us to directly examine the idea that adaptation is driven by

sensory prediction errors.
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FACTS model overview

FACTS was developed as a hierarchical model that relies on both the higher-level task repre-

sentations (e.g., vocal tract constrictions) as well as lower-level “body-state” or articulatory rep-

resentations (e.g., articulator positions) [38]. Such a hierarchical framework is well-grounded

in the speech motor control literature which suggests that higher-level tasks defined in terms

of the location and size (or “degree”) of constrictions in the vocal tract effectively control

speech articulators, minimizing the degrees of the freedom (e.g., [47, 48]). Congruent with the

literature, all FACTS designs tested in the current study employed both the task and articula-

tory state (see Materials and methods for more details).

A total of three different design variants of FACTS were implemented and tested to simu-

late auditory-motor adaptation. In all designs, internal models were updated when auditory

prediction errors were detected; the designs differed with respect to which internal model

modules were updated by these errors. The first two model designs (Fig 1) had a similar archi-

tecture to our previously proposed model [38]. In the first design (Design A), auditory predic-

tion errors updated the articulatory state estimate (~at) through Kalman gain-based state

correction (KDyt). In turn, the corrected articulatory state estimate was used to update the

Fig 1. Designs A and B were developed based on the original FACTS architecture in Parrell et al. [38]. Design A updates the articulatory state prediction

based on the final state estimate (~at) which is determined by the original state prediction (ât) and state correction signals based on the auditory prediction

errors (κtΔyt). Design B updates the auditory forward model (i.e., auditory prediction) directly from the auditory feedback. Note that there are a few differences

between these models and the original design [38], which are described in the Materials and methods section in detail. η denotes Gaussian noise. For

adaptation simulations (which involved a short utterance), we did not allow any online compensation, simulating the fact that auditory feedback-based online

compensation begins 100–200 ms after the onset of the perturbation (e.g., [27, 50–52]) and somatosensory feedback-based compensation would be nearly

negligible (since no somatosensory perturbation was applied). Thus, the default state feedback pathways that allow online compensation were disabled. Instead,

the prediction-based pathways were used.

https://doi.org/10.1371/journal.pcbi.1011244.g001
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forward model that predicted the current articulatory state. The articulatory forward model,

which generated predictions for each articulatory dimension, was trained and updated using

Locally Weighted Projection Regression (LWPR, [49]). The second design (Design B) used the

same architecture as Design A, but implemented adaptation by updating only the auditory for-

ward model, rather than the state prediction. In this design, LWPR was used to update the

auditory forward model using the auditory feedback.

The last design (Design C) used a modified hierarchical architecture, inspired by a

recently proposed idea that there may be segregated loops that characterize cortical-subcor-

tical connections for motor control at the task and “body” levels [53]. In this design, there-

fore, we implemented separate state feedback control loops for the articulatory level and the

task level. This modified hierarchical architecture was also motivated by the fact that audi-

tory feedback is most informative about higher-level vocal tract tasks (e.g., a high first for-

mant is associated with a narrow constriction at palate), whereas it is less relevant to the

lower-level articulatory state (i.e., positions of all speech articulators/muscles, see [54]).

Hence, Design C expanded on the task state estimation process previously implemented as a

simple transformation from the articulatory state estimate, such that a second “observer”

estimated the task state based on the previous articulatory state, an efference copy of the

task-state motor command, and auditory feedback (Fig 2). Specifically, the articulatory state

estimate of the previous time step was transformed to a task state representation via an artic-

ulatory-to-task transformation model learned using Locally Weighted Projection Regression

(LWPR). The transformed previous task state, along with an efference copy of the task state

motor command, was sent to the task state prediction module to generate a task state predic-

tion. An Unscented Kalman Filter (UKF, [55]) process then computed the final estimate of

task state (~x t) based on the task state prediction (x̂ t) and auditory feedback. To model adap-

tation, the final (corrected) task state estimate was used to update the articulatory-to-task

transformation LWPR model (Fig 2).

In all three designs, we attempted to simulate adaptation in response to perturbations in the

first formant frequency (F1) with repeated trials of a short production (150 ms duration) of

/ε/. For adaptation data, the first and second formant frequencies (F1 and F2) were extracted

from the middle portion of the vowel (from 50 ms to 100 ms after the vowel onset). Given that

auditory feedback-based within-utterance compensation is known to begin *100–200 ms

after perturbation onset (e.g., [27, 50–52]), such online compensation response can be consid-

ered to be minimal in this context. Additionally, even though the latency of a somatosensory

feedback-based corrective response is known to be shorter than that of auditory (e.g., [56, 57]),

the application of an auditory perturbation alone would not involve somatosensory prediction

errors, so somatosensory feedback-based corrective response would also be negligible. There-

fore, in all adaptation simulations presented in this study, both auditory and somatosensory

feedback pathways for online compensation were disabled. Rather, the sensory feedback or its

related information (i.e., state correction signals) were stored and used to update relevant

modules after each movement, if the size of the prediction errors exceeded a given threshold

(see below).

We modeled adaptation as trial-to-trial updates to internal predictive Locally Weighted

Projection Regression (LWPR) models (Design A and B) and a transformation LWPR

model (Design C). Within each trial, whenever auditory prediction errors were detected,

the prediction error-based state estimate was stored in an error memory buffer. After each

trial, this memory buffer was used to update predictive/transformation LWPR models, and

the updated LWPR models were used on the next trial. Another feature that was imple-

mented for all designs was auditory prediction error detection threshold. The auditory pre-

diction error in F1 was measured against this threshold to determine whether such error
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should be “remembered.” If the error was larger than the given threshold, the error was reg-

istered for various module updates shown in Figs 1 and 2, providing opportunities for yield-

ing adaptation. More in-depth descriptions are included in the Materials and methods

section.

In addition to attempting to simulate adaptation that matches with empirical data, mecha-

nisms driving the adaptive behavior were examined by altering different modules of FACTS

during simulations (e.g., fixing auditory prediction). Additionally, given that the modified

hierarchical architecture is novel, its online compensation in response to within-utterance

unpredictable formant perturbation was also investigated to ensure that the new architecture

was able to replicate the previously reported compensatory behavior (for the original architec-

ture’s online compensation simulations, see [38]). Finally, we also explored how changes to

various model parameters (e.g., auditory noise, auditory prediction error detection threshold,

and task target noise) affected adaptation.

Fig 2. Design C was developed based on a modified hierarchical FACTS architecture. For Design C, a modified hierarchical FACTS architecture in which auditory

feedback is used by the task state estimator, rather than the articulatory state estimator, was used. The task state estimator generates a task state prediction based on the

previous articulatory state estimate via an articulatory-to-task transformation LWPR model and an efference copy of the task motor commands. This task state

prediction can be corrected using auditory prediction errors. During adaptation simulations, when auditory prediction errors are detected, the final (corrected)

estimate is used to update the articulatory-to-task transformation model. η denotes Gaussian noise. As with Design A and B, sensory feedback-based online

compensation was disabled.

https://doi.org/10.1371/journal.pcbi.1011244.g002
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Results

Updating forward articulatory state or sensory prediction models does not

cause adaptation

In Design A, articulatory state correction signals that arose from auditory prediction errors

updated the articulatory state prediction model, which is a forward model that predicts the

current articulatory state from the previous state and an efference copy of the articulatory-level

motor commands. Although this design slightly lowered the first formant frequency (F1) in

response to the 400 cents up-shift in F1 (Fig 3, top left), the extent of this decrease was almost

negligible (*5 Hz over 140 trials). Moreover, this change resulted from a slow, steady growth

Fig 3. Simulation results for different model designs. Top row: A 400 cents up-shift in the first formant frequency (F1) was applied from trial 21 to

trial 140 (yellow shaded area). To extract F1 for each trial, we averaged F1 of the middle 10 time steps (time step 11 to 20) of the 30 time steps of the

simulated acoustic data for each production. Experimental data was retrieved from the control group in Kim & Max [19]. Middle row: F1 values

produced across time during five early perturbation trials (trials 22, 24, 26, 28, and 30). Lighter shades indicate later trials. Note that the first 10 time

steps for each trial are pre-phonatory preparatory movements from the model’s default start position, so no acoustic data are plotted. Bottom row: The

true articulatory state of tongue height (solid green lines) and its state estimate (gray dots), expressed in the Maeda Principal Component unit (M),

plotted across time steps for the early perturbation trials (trials 22, 24, 26, 28, and 30). Black dots indicate the estimate in a baseline trial. Lighter shades

indicate later trials. In Design A, the estimate diverged from the true state across the time steps, and the amount of divergence also gradually increased

across the trials. Only in Design C, the true articulatory state for the tongue height demonstrated noticeable adaptation across trials (green lines). The

estimates (gray dots) closely tracked their true state in Design C.

https://doi.org/10.1371/journal.pcbi.1011244.g003
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over trials rather than commonly reported rapid adaptation response (e.g., [19]). In fact, no

change in F1 was visible in the first 10 perturbation trials (see Fig 3, middle left). The articula-

tory state data across time steps showed that the articulatory state estimates started to diverge

from the true state as the forward articulatory prediction model was updated (Fig 3, bottom

left), likely driven by the up-shift F1 perturbation causing the estimator to underestimate the

true tongue height. Nevertheless, the true state (i.e., the actual movement) changed minimally

across the perturbation trials, leading to minimal changes in the acoustics.

We also explored several other variations of Design A, but none of them simulated adapta-

tion. Relying solely on auditory feedback (by removing somatosensory feedback), for example,

resulted in a behavior that first looked like adaptation, but each vowel production had unstable

behavior in which the articulators never reached a stable final position. Such within-vowel for-

mant changes are not consistent with empirical data. In addition, applying another type of Kal-

man filter also did not solve this problem. These results demonstrated that Design A,

regardless of other factors such as the amount of reliance on auditory feedback, was not able to

simulate adaptation (see S1 Appendix for more details).

In Design B, the forward auditory prediction model was updated based on actual (per-

turbed) auditory feedback whenever auditory prediction errors were detected. Although the

simulation showed that auditory prediction was indeed updated due to the perturbation (i.e.,

predicting higher F1, see Design B in Fig 3), neither the model’s acoustic nor articulatory out-

put showed any changes from the baseline behavior. These results indicated that updates in

auditory prediction alone did not generate adaptation in FACTS. Although it has been shown

that updates to forward models in other frameworks can yield adaptation (e.g., [58]), it is

important to note that such models used updated forward models to influence the motor com-

mand, leading to adaptation. In Design B, forward model updates did not directly affect motor

commands, and our results clearly demonstrated that such a model design did not yield

adaptation.

Updating the task state transformation model produces realistic

adaptation

The poor performance of Designs A and B indicated that a different architecture might be nec-

essary to yield adaptive behavior. First, the simulations from Design A suggested that changes

at the task level, as opposed to the articulatory level, might be necessary to produce adaptation.

Second, the simulation results from Design B demonstrated that updating the forward audi-

tory prediction model alone did not yield any noticeable changes in the control laws, suggest-

ing that an update in task state, which can affect the task state feedback control law, might be

necessary. However, the architecture for Designs A and B did not include any methods to

directly update task state.

Hence, inspired by recent proposals of hierarchical feedback control for human movement

[53], we developed an architecture in which auditory feedback was integrated in the task state,

rather than the articulatory state estimation system (Design C). In this modified hierarchical

architecture, auditory prediction errors directly influenced the task state by updating the

learned articulatory-to-task state transformation. We hypothesized that updating this transfor-

mation may yield adaptive changes, given the critical role of the task state estimate in the feed-

back control law.

In Design C, the final state estimate, which was corrected based on auditory prediction

errors, was used to update the articulatory-to-task transformation model after each utterance.

The simulation results showed a gradual decrease in F1 across trials, although with a slower

rate of learning and smaller extent compared to the experimental data (Fig 3, top and middle
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right). Additionally, the articulatory estimate was very close to the true articulatory state across

the perturbation trials in the simulation (Fig 3, bottom right). Together, these findings indi-

cated that updating the articulatory-to-task transformation model produced adaptive behavior

broadly consistent with auditory-motor adaptation.

Nonetheless, the simulated adaptation was smaller and slower than adaptation observed in

the experimental data. The small adaptation response of the model was likely due to the Kal-

man filter which assumed a high magnitude of random noise in the sensory signals in order to

achieve stable control. Thus, when faced with auditory perturbation, the filter attributed most

of the prediction error resulting from the perturbation to random noise in the auditory feed-

back and relied primarily on the original state prediction to estimate the final estimated state.

Therefore, the final estimate determined by the Kalman filter was closer to the original predic-

tion, yielding only a small adaptation response. Although it was possible to maximize the con-

tribution of sensory input to the final state estimate by adjusting Kalman filter variables (e.g.,

reducing the magnitude of the sensory covariance matrix or increasing the magnitude of the

prior covariance matrix), such changes were less than optimal as they introduced substantial

instability in the final estimate. That is, because the estimator was tuned to react to any changes

in the measurement, the estimator also unnecessarily reacted to regular noisy sensory signals,

even without any consistent perturbation. Such behaviors were undesirable as the Kalman fil-

ter then became unstable and sub-optimal in an unperturbed environment.

Numerous control applications involving sudden and large changes in the environment or

the controller have achieved stable control using adaptive Kalman filters (e.g., controlling an

unmanned aerial vehicle under sensor or actuator failures in [59]). In a common adaptive Kal-

man filter design, residual errors (prediction errors inversely weighted by their measurement

noise covariance) are constantly monitored. If they become larger than a certain threshold, the

Kalman filter can adapt so that the estimator becomes more sensitive to the sensor information

(e.g., auditory feedback) and the resulting Kalman gain becomes larger. This large Kalman

gain allows greater and faster updates in the state estimate, outperforming non-adaptive Kal-

man filters. Importantly, if the residual error is smaller than this threshold (e.g., in an unper-

turbed environment), the Kalman filter does not increase its sensitivity to the measurements,

which offers stable tracking. Adaptive Kalman filters, therefore, are more versatile across dif-

ferent environments compared to non-adaptive Kalman filters.

In order to simulate more realistic sensorimotor adaptation, we implemented a simple

adaptive unscented Kalman filter (adaptive UKF or AUKF) in Design C (see Fig 4A). At each

time step, the task estimator computed �, the square of the auditory prediction errors, inversely

weighted by the auditory noise covariance matrix. If � was larger than a given threshold (γ),

the AUKF parameters were increased by multiplying gains. Specifically, the cross covariance

matrix (cross covariance of the task state and auditory feedback sensory measurements sigma

points), Pxy(t) was increased 6-fold from the default. In addition, the process noise matrix (Q(t
− 1)) and the prior covariance matrix of the task state sigma points (Pxx(t − 1)) were increased

10-fold, which, again, tuned the filter to rely more on sensory information in the following

time step (i.e., t). The resulting Kalman gain and state correction signals became larger for the

given time step as well as the following time steps, yielding large updates in articulatory-to-

task transformation. As shown in Fig 4B (top), the update led to immediate adaptive response

in the subsequent trial [60]. Overall, the adaptive response from AUKF was more similar to

the experimental data than the simulation from the non-adaptive Kalman filter. In addition to

learning, the model simulation also showed “unlearning” during the after-effects phase (i.e.,

after the the perturbation was removed).

The simulation also demonstrated that auditory prediction errors quickly became smaller

due to auditory prediction changes (i.e., increase in predicted F1) as well as the acoustic output
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Fig 4. Design C implemented with adaptive UKF (AUKF). A: The task estimator (Design C) implemented with AUKF. During

perturbation trials, if the squared auditory prediction errors inversely weighted by noise covariance (�) were larger than a given

threshold (γ), larger correction signals were generated from the Kalman filter for the current and the following time step. This in

turn allowed faster and larger updates in the articulatory-to-task model. B: Simulations are shown with data from the control group

in Kim & Max [19] in the top row, and with the native English speakers in Mitsuya et al. [61] in the bottom row. In all three

simulations, the AUKF (blue solid line) produced more realistic simulations compared to the non-adaptive UKF (green dashed line).

C: The model also generated F2 changes even when only F1 was perturbed. The simulated adaptation was similar to the healthy

control group’s data in [62]. Perturbed trials are indicated by yellow shaded areas in both B and C.

https://doi.org/10.1371/journal.pcbi.1011244.g004
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changes (i.e., decrease in produced F1). Because the produced F1 decreased, its perturbed

auditory feedback also decreased, resulting in in a smaller difference between predicted feed-

back and actual feedback (i.e., smaller prediction errors). In addition, the magnitude of

changes in auditory prediction and acoustic output of the model were clearly coupled. When

the auditory prediction errors were large (i.e., auditory prediction was very different from

auditory feedback), trial-to-trial adaptive changes in the acoustic output were larger (i.e., trial

21–30). In contrast, when the auditory prediction was closer to the auditory feedback, and

thus the prediction errors were smaller (i.e., after trial 40), the trial-to-trial learning was

reduced even though the extent of the adaptation was largely incomplete (i.e., the perturbed

auditory feedback never reached the pre-perturbation baseline output level).

The model was also able to generate realistic adaptation in response to a gradually intro-

duced (ramped) perturbation. After tuning a few parameters (see Materials and methods for

more details), the simulations closely matched the native English speakers’ data from Mitsuya

et al. [61] in both up-shift (i.e., F1 was increased in the auditory feedback) and down-shift (i.e.,

F1 was decreased in the auditory feedback) conditions (Fig 4B), bottom). Additionally, the

model produced changes in the second formant frequency (F2) output even when only F1 was

perturbed, similar to previous behavioral findings (e.g., [62–65]). In Fig 4C, it can be observed

that the simulation closely matched both F1 and F2 adaptation response in the control group

from Mollaei et al. [62], even though the model parameters were tuned only to match the F1

productions.

Auditory prediction and articulatory state feedback control law

In order to examine the core mechanisms that drive adaptation, we ran various test simula-

tions of the proposed Design C with adaptive UKF (AUKF). The first test examined the rela-

tionship between auditory prediction and adaptation. In the simulations of Design C (with

both UKF and AUKF), auditory prediction changed in response to perturbations. Because

such changes occur along with adaptation, it was desired to investigate whether such predic-

tion change was necessary for adaptation. Therefore, we artificially fixed the auditory predic-

tion to remain at the baseline value (i.e., no prediction changes). Despite the prediction

remaining at a same value, an adaptive response was still present (Fig 5, left), showing that

auditory prediction changes are not necessary for adaptation. In fact, the adaptation response

was larger and faster than the default mode (dashed line) in which auditory prediction

changed, suggesting that auditory prediction changes actually reduced adaptation. This obser-

vation was in line with the earlier observation that auditory prediction errors become smaller,

in part, due to the auditory prediction changes. In other words, as the auditory prediction

became more accurate for predicting perturbed feedback (e.g., predicting higher F1), the

resulting prediction errors were reduced, thereby decreasing or slowing adaptation response.

Second, we tested the effects of updating the articulatory state feedback control law. The

articulatory control law utilizes a Moore-Penrose pseudo-inverse Jacobian matrix of the articu-

latory-to-task transformation model (see [38, 48, 66] for more details) that transforms desired

task-space changes to articulatory-space motor commands. Because the Jacobian mapping can

be directly derived from any LWPR model [49], the updated articulatory-to-task mapping in

Design C can be used to generate updated Jacobian matrices for the articulatory control law.

We found that incorporating these updated Jacobian matrices in the articulatory control law

produced a similar adaptation response to the default case, where the articulatory control law

was not changed (Fig 5 right, blue solid line vs. scarlet dashed line). Importantly, when the

updated Jacobian matrices in the articulatory control law were replaced with “naïve” Jacobian

matrices (i.e., Jacobian matrices generated by the original, unadapted LWPR) in the middle of
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adaptation, the adaptive behavior was still present (green shaded area in Fig 5 right). On the

other hand, when the updated Jacobean matrices were maintained in the articulatory control

law while the updated articulatory-to-task transformation module was switched to the “naïve”

(original) model, adaptation was completely absent (gray shaded area in Fig 5 right).

One reason for this finding may be that we used the Moore-Penrose pseudoinverse (which

finds the minimum Euclidean norm solution to a system of linear equations with multiple

solutions) of the Jacobian to approximate the true inverse Jacobian in the Articulatory State

Feedback Control Law. Further, we found that the Jacobian matrices had surprisingly large

changes in the lip parameters that appeared irrelevant for adaptation. Hence, even when the

articulatory-to-task LWPR can successfully update its prediction, its updated Jacobian matrix

may not capture the appropriate dimensions for the Articulatory State Feedback Control Law.

An alternative possibility may be that the task state is more directly related to the acoustic out-

put in that vowel formants are related to constrictions in the vocal tract rather than articulatory

positions. In this framework (Design C), the articulatory state is most directly associated with

somatosensory feedback.

Online compensation to unpredictable formant perturbation

Although the main scope of the current study was to drive trial-to-trial sensorimotor adapta-

tion using auditory prediction errors, such errors can also be used to generate online feedback

corrections within a single utterance. Our previous model [38] with the same architecture

used in Designs A and B, was able to reproduce this behavior. Here, we tested whether the

revised hierarchical model (Design C) was similarly able to produce online compensation

behavior for auditory feedback perturbations. In order to match previous behavioral and

computational work, we lengthened vowel duration to 400 ms (80 time steps) and applied a

perturbation that shifted F1 upwards by 100 Hz.

Fig 5. Auditory prediction and articulatory state feedback control law. Left: Simulations with auditory prediction fixed to its baseline value. The output showed

a greater adaptation response compared to the default simulation where the auditory prediction was allowed to vary. Right: Using updated Jacobian (task-to-

articulatory) matrices in the articulatory state feedback control law resulted in similar adaptation behavior (blue solid line) to that of the default mode which

updates only the articulatory-to-task transformation (scarlet dashed line). When “naïve” Jacobian matrices generated from the unadapted articulatory-to-task

model were used in the articulatory state feedback control law instead (green shaded area), the adaptation behavior was still present. In contrast, when the adapted

Jacobian matrix for the state feedback control law was used with the “naïve” articulatory-to-task transformation model, adaptation disappeared (gray shaded area).

https://doi.org/10.1371/journal.pcbi.1011244.g005

PLOS COMPUTATIONAL BIOLOGY Prediction errors drive auditory-motor adaptation in FACTS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011244 July 28, 2023 12 / 39

https://doi.org/10.1371/journal.pcbi.1011244.g005
https://doi.org/10.1371/journal.pcbi.1011244


In this simulation, the default UKF setting, rather than AUKF, was used for two reasons.

First, although the current model does not implement sensory feedback delays, it is intuitive

that the sensorimotor system would not drastically alter ongoing productions based on the

highly delayed sensory signals (see similar perspectives in the context of arm reaching in [67]

or saccades in [68]). Thus, it is unlikely that the state correction signals which update the task

state estimator in the context of online compensation are as large as in adaptation. In agree-

ment with this idea, online compensation response is commonly reported to be much smaller

(*10% of perturbation, [69]) than the adaptive response (*30% of perturbation [4]). Addi-

tionally, our previous work showed that a non-augmented UKF could achieve the small com-

pensation response in the case where auditory feedback was used to estimate the articulatory

state [38]. Second, recent studies have reported that the amount of online compensation and

the extent of adaptation do not correlate across participants [69, 70], suggesting that a UKF

governing compensation should be implemented differently from the AUKF which governs

adaptation response in FACTS.

Design C replicated our previous version’s online compensation response to formant shift

(Fig 6 left). The size of the compensation relative to the amount of perturbation was similar to

previous empirical findings (e.g., *10% in response in [69]). Although changes can be

observed in both F1 and tongue height, the articulatory state estimate was closely tracking the

true state (Fig 6 middle). Fig 6 (right) illustrates that the task state estimate changed abruptly

immediately after the perturbation onset (i.e., time step 41–43), but quickly returned to the

task target (22.1 mm), due to the articulatory state changes. Thus, the modified hierarchical

FACTS architecture was also capable of generating online compensatory responses to unpre-

dictable auditory feedback perturbation.

Effect of model parameters on adaptation

Adaptive UKF (AUKF) multiplicative gains (βxx, βQ, βxy). In the AUKF, the prior

covariance (Pxx), process noise (Q), and cross covariance (Pxy) matrices were each multiplied

by gain scalars, βxx, βQ, and βxy accordingly. As shown in Fig 7A, increasing the gains increased

adaptation rate and extent, though there was a larger impact on the rate than the extent. For

fitting the data from Kim & Max [19], which showed a large amount of adaptation, large values

for the AUKF gain were required and had to be increased by several fold above their default

Fig 6. Within-utterance data during online compensation response. Yellow shaded area indicates time steps with the 100 Hz up-shift perturbation in

F1. Left: F1 decreased across the time steps in response to the unpredictable perturbation. Middle: The compensatory response was also observed in the

articulatory state estimate (gray dots) and its true state (green lines) expressed in the Maeda unit (M). Right: Despite the changes in the articulatory

state, the task state estimate remained near the task target.

https://doi.org/10.1371/journal.pcbi.1011244.g006
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settings. However, for fitting data in Mollaei et al. [62], lower AUKF gains provided a better fit

(e.g., see the parameters used in various simulations in Materials and methods). It remains an

open question how the AUKF gains may vary depending on individuals, populations, and

experimental paradigms.

Auditory prediction error detection threshold (γ). In all the simulations presented in

the current study, adaptation was driven by auditory prediction errors, consistent with theo-

retical proposals in the literature. To accomplish this, the final state estimate for each time step

(which was updated by auditory prediction error-based state correction signals) was stored

into the memory buffer to be used to update the task transformation after the utterance. This

registration of error into memory occurred only if auditory prediction error in F1 for that time

step was larger than a threshold (e.g., 5 Hz). Hence, the size of the error detection threshold

partially determined the extent of adaptation. If the threshold was larger, the amount of adap-

tation was smaller because prediction errors became more rapidly smaller than the large

threshold during learning, causing the model to reach a plateau (see in Fig 7B).

Auditory noise (ηaud). Measurement noise in sensory systems influences Kalman filtering

as the noise covariance matrix directly determines how much the filter weighs feedback sig-

nals. FACTS is implemented with an auditory noise scalar, a parameter that determines Gauss-

ian noise added to auditory signals [38]. As the amount of noise in the auditory signal

increases, the Kalman filter relies less on auditory feedback, leading to smaller Kalman gains

(i.e., smaller updates to the initial prediction). Theoretically, this would result in less

Fig 7. The effects of changes in model parameters on adaptation. The experimental data shown as a comparison (black line) is the control group in

Kim & Max [19]. For a comprehensive overview of the parameters used in the figure, see Materials and methods. A: AUKF gains (βxx, βQ, βxy),
multiplied to the prior covariance matrix (Pxx), process noise matrix Q, and cross covariance matrix (Pxy) accordingly, affected the adaptation rate and

extent. Specifically, larger gains produced faster and larger adaptation. B: Increases in the auditory prediction error threshold (γ) reduced the extent of

adaptation. C: Reducing the auditory noise scale (ηaud) increased adaptation in FACTS with UKF (dotted lines). However, changes in auditory noise

scale had a minimal effect on adaptation in FACTS implemented with AUKF (solid lines). D: Increases in task target noise (ηtarg) did not affect adaptive

behavior, but did increase inter-trial variability.

https://doi.org/10.1371/journal.pcbi.1011244.g007
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adaptation, given that the final estimate is used to update the articulatory-to-task transforma-

tion model. Congruent with this hypothesis, increasing auditory noise levels resulted in

decreases in adaptation in Design C with the non-adaptive UKF (Fig 7C). In the design with

AUKF, however, the effect of auditory noise had only minimal effects in terms of adaptation,

likely because all auditory prediction errors above the detection threshold (γ) already drove

large updates to the state in the AUKF case.

Task target noise (ηtarg). FACTS has a task target noise scalar parameter that adds Gauss-

ian noise to the task target (i.e., constriction degree). When the task target(s) for each produc-

tion/utterance were slightly altered by this added noise, the model simulated inter-trial

variability. The simulations presented in the previous sections had this parameter set to 0 so

that the differences between simulations could be demonstrated more clearly. When this

parameter was increased, inter-trial variability increased, but the variability did not affect the

overall extent of adaptation (Fig 7D). Notably, this finding that the adaptive behavior did not

change even when task target for each trial was slightly altered indicated that the articulatory-

to-task transformation model updates generalized to some degree beyond the specific articula-

tory and task state pairs used to update the model, affecting a broader region in the articulatory

and task spaces.

Discussion

We investigated sensorimotor mechanisms through which auditory prediction errors drive

auditory-motor adaptation via FACTS. Whereas designs based on the original architecture of

FACTS [38] did not yield adaptive behaviors, the newly modified hierarchical architecture in

which auditory prediction errors updated the articulatory-to-task transformation (Design C)

simulated adaptation. With a simple adaptive UKF (AUKF) implementation, Design C dem-

onstrated realistic adaptive behaviors that were qualitatively similar to four separate experi-

mental data sets [19, 61, 62]. The model was capable of generating adaptation in response to

different perturbations including sudden (step) and gradual (ramp) as well as up-shift and

down-shift F1 perturbations. The model also generated unintended adaptation in F2 during

F1-only perturbations, a phenomenon that has been documented in the literature (e.g., [62]).

In addition, the modified model replicated the previous version’s online compensation

response to unpredictable F1 perturbation.

Auditory prediction errors

In FACTS, auditory prediction errors were shown to drive adaptation, adding further support

to the perspective that auditory prediction errors may drive auditory-motor adaptation (e.g.,

[5, 19, 20, 26, 27]). Moreover, FACTS simulations also demonstrated that the size of auditory

prediction errors directly influenced adaptive behavior. In the early perturbation trials in

which there were large auditory prediction errors, the rate of learning was faster. In contrast,

when auditory prediction errors became smaller, the adaptation response slowed down or

reached a plateau, suggesting that the size of the prediction errors may affect the rate and

extent of learning.

Task-level updates

Importantly, adaptation was observed only when the articulatory-to-task transformation was

updated, resulting in task-level changes (Fig 3). In contrast, adaptation was absent when

updating only articulatory-level modules such as the articulatory state prediction (Design A)

or the inverse Jacobian matrix (i.e., task-to-articulatory) in the articulatory state feedback con-

trol law (Fig 5 right, gray shaded area). Although we cannot conclude that articulatory-level
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changes cannot yield adaptation in other model designs from these findings alone (see S1

Appendix for additional analyses), we show that within the existing FACTS architecture only

task-level changes, and not articulatory-level changes, seem to yield adaptation.

This finding is particularly interesting in light of multiple recent upper limb motor learning

studies suggesting that implicit adaptation may be influenced by task errors in addition to pre-

diction errors [10–15]. Likewise, Ranjan & Smith [71] argued that implicit adaptation could be

better explained by error signals that account for changes in both the prediction error-based

estimate and the target. Thus, the authors demonstrated that the driving error signals can be

described as motor performance prediction errors (MPPE), a discrepancy between the esti-

mated action and movement goal, rather than sensory prediction errors. Directly in line with

these perspectives, the task state feedback control law in FACTS computes the discrepancy

between the task state estimate and the task target. As a result, in theory, FACTS can adapt

from both prediction error and task error. For example, if the task estimate is different from

the task target due to the updates in task estimate, the control law issues motor commands to

reduce the discrepancy (e.g., Fig 4). Similarly, if the task target is shifted, the control law would

also issue corrective motor commands for the errors to be reduced (i.e, moving task estimate

towards the shifted target). Hence, the FACTS design offers a plausible hierarchical state feed-

back control framework in which both prediction errors and task errors can contribute to

adaptation. This is especially important given that studies continue to examine how task errors

or task-space variables may impact speech adaptation (e.g., anchoring sound target, [72], lexi-

cal status of the target, [73]).

Adaptation led by task-level changes has been previously reported by other prominent

computational models. Most notably, the DIVA [29] and GEPPETO [58, 74] models both

demonstrated that updates in the internal models that govern task space, which was defined as

the auditory space in the models, led to adaptation. Even though the task space in FACTS is

defined in terms of constrictions, our results replicated the same result. In sum, the importance

of task-level updates is highlighted in the FACTS simulations, congruent with both speech and

non-speech motor control literature.

Articulatory-to-task transformation updates

The articulatory-to-task transformation module is novel and its mechanism in driving adapta-

tion can be interpreted with different perspectives. The first perspective is that the task trans-

formation updates may reflect forward model updates. By its design, task transformation

provides input to the task state prediction, so any updates in the transformation greatly influ-

ences the task prediction and the resulting task state estimate. In this regard, task transforma-

tion updates can be seen as a type of forward model-based learning that updates the task

estimate, which in turn causes the task state feedback control law to generate adaptive behav-

ior. Indeed, our finding that auditory forward prediction changed during adaptation supports

this notion. This perspective is also similar to the idea of paired inverse-forward model updates

(e.g., [34]), and has been demonstrated to be plausible in a simple formant adaptation model

[37]. Nevertheless, strictly speaking, the paired inverse-forward model updates are not congru-

ent with FACTS given that the task state feedback control law is not an inverse model of the

task transformation (for similar views on control policies vs. inverse models, see [35, 42]).

An alternative, perhaps more straightforward, perspective is that the task transformation

updates reflect task-level control changes, rather than changes to forward models. This inter-

pretation arises from the view that task-level control changes, but not prediction updates, are

ultimately required to drive learning [36]. For example, our simulations illustrated that for-

ward model updates alone did not drive adaptation, even though the auditory prediction was
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successfully updated to predict the perturbed feedback (see Design B in Fig 3). Indeed, updat-

ing only the auditory prediction to match the perturbed auditory feedback could not possibly

result in adaptation because the error signals would be reduced without any changes in the

motor behavior (e.g., [75]). In contrast, even when auditory prediction was artificially fixed at

the baseline level, adaptation response was present (Fig 5 left) as long as the task-level control

was updated. Thus, within the FACTS framework, the forward model-based updates were not

necessary for adaptation. Rather, the articulatory-to-task transformation updates, which can

be seen as direct updates to task-level control, drove adaptation.

Importantly, the alternative perspective does not necessarily reject the notion that forward

model updates may be present during adaptation. That is, the task transformation inevitably

affects auditory prediction (in addition to the task state feedback control law), and it may be

viewed also as a forward model (in addition to being a part of the control law) as in the first

perspective. However, in contrast to the first perspective, the alternative perspective suggests

that forward model updates, though they may be present, do not drive the learning behavior

(see a similar view in [36]).

Incomplete adaptation

The FACTS simulations replicated previous findings of incomplete speech adaptation, which

is generally reported to be 20%-40% of the perturbation magnitude [4]. Some have hypothe-

sized that the mismatch between auditory and somatosensory feedback may lead to incomplete

adaptation (e.g., [76–78]). The current version of the FACTS model (Fig 2), unlike the previous

version [38], does not directly integrate auditory and somatosensory feedback-based state cor-

rections, and thus cannot provide support for this view.

Others have suggested that speech adaptation may have small error sensitivity, a broad

term in state space models that describes how much of the perceived error translates to learn-

ing (e.g., [79]). In FACTS, there are multiple model parameters that can affect the model’s sen-

sitivity to errors. However, even when some of those parameters were set to be highly sensitive

to auditory errors (i.e., auditory prediction error threshold < 5 Hz or auditory noise scale

effectively < 2–3 Hz), the adaptation response remained short of 60 Hz or greater compared

to full adaptation. This suggests that the model parameters that determine sensitivity to audi-

tory errors were not the main factors that limited adaptation in FACTS simulations.

It also has been suggested that the physiological constraints of the vocal tract may be limit-

ing the amount of adaptation (e.g., [4]). However, the FACTS vocal tract, the Maeda model, is

capable of lowering F1 to reach full adaptation (see the vowel space described in [80] and S2

Appendix). Thus, the incomplete adaptation in FACTS cannot be explained by the limitation

in the model. Another possibility is that changing perceptual boundaries during adaptation

may be shifting auditory targets, limiting adaptation [81]. However, recent studies have found

that perceptual targets do not change during adaptation [19] and providing accurate percep-

tual targets to participants (by playing the target sounds to the participants) does not increase

adaptation [72, 82].

Instead, FACTS simulations provide another plausible explanation for incomplete adapta-

tion: auditory prediction. During adaptation, the F1 auditory prediction increased across the

trials in order to better predict the perturbed feedback (i.e., increased F1), but the actual audi-

tory feedback decreased due to the adaptive changes in the motor output (Fig 4B). As auditory

prediction and auditory feedback moved towards each other, the resulting auditory prediction

errors were drastically reduced across the perturbation trials. As a result, by the time auditory

prediction errors were no longer registered as errors (i.e., became smaller than the auditory

prediction error threshold) and the adaptation halted, the extent of adaptation remained
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incomplete. Thus, adaptation extent was limited by changes in auditory prediction (in addition

to other factors such as the error threshold, see below). This factor contributing to incomplete

adaptation may also be applicable to other models of speech motor control such as Bayesian

GEPPETO, in which the auditory-motor internal forward model is updated during learning

[58, 74]. Hence, this idea warrants future empirical studies.

Adaptive changes in F2

FACTS generated adaptive changes in both F1 and F2, even though the perturbation was

applied only in F1. Such F2 increase in response to the F1 up-shift perturbation has been docu-

mented by multiple studies [62–65], but also see contrary findings in [76, 83]). Furthermore,

there is evidence that such F1 and F2 changes may be coupled together. Lametti et al. [64]

reported that anodal transcranial direct current stimulation (tDCS) enhanced adaptation in

both F1 and F2, even though only F1 was perturbed. Tang et al. [65] corroborated the finding

by demonstrating that a repetitive transcranial magnetic stimulation (rTMS) application over

the tongue region of M1 impaired adaptation response in both F1 and F2.

It has been postulated that such changes in F2 might be due to the speech motor system

choosing to issue motor commands that correspond to an already learned speech production

(e.g., [65]). For example, the sensorimotor system may attempt to lower F1 by changing its

productions closer to another vowel, /I/, which may increase F2. While this may be true, the

FACTS model is not implemented with any preference in the task or articulatory space.

Instead, from our model design, we propose two additional potential explanations for this phe-

nomenon. First, this may be due to the fact that the tasks are defined as constrictions, and

therefore, task-level constriction-based changes during adaptation may result in changes in

both formant frequencies. That is, the task state feedback control law reducing the tongue pala-

tal constriction degree not only lowers F1, but also increases F2. Second, there may be bio-

mechanical reasons why changing the tongue position to counter the F1 shift also changes F2.

In fact, studies of sensitivity functions in the vocal tract show that any change in vocal tract

area function induces simultaneous changes in F1, F2 and F3 (e.g., [84]). However, this latter

point is not supported by our previous study with the Maeda model that showed a nearly full

coverage of the vowel space in the Maeda model output ([80] and also see S2 Appendix). This

means that, at least for the target vowel used in the current study (/ε/), the adaptive behavior

in FACTS should not be constrained by the kinematics of the Maeda model (i.e., articulatory-

level changes can certainly be made to alter F1, but not F2).

Perceptual acuity and auditory noise

Previous research has examined the relationship between perceptual acuity and adaptation,

and found that perceptual acuity could predict the amount of F1 adaptation (e.g., [85, 86]).

Likewise, a recent study by Daliri & Dittman [26] also found that perceptual boundary sizes,

measured from psychometric functions, negatively correlated with adaptation (i.e., partici-

pants with smaller perceptual target boundary size adapted more). A computational model,

DIVA, has also demonstrated that the auditory acuity defined as the size of auditory targets is

negatively correlated with adaptation [85]. In FACTS, the perceptual auditory acuity may be

most directly related to two parameters. First, auditory noise has been hypothesized to be

inversely related to the perceptual acuity [38]. Interestingly, simulations regarding the effects

of auditory noise on adaptation told conflicting stories. The auditory noise clearly affected

adaptation in the design with non-adaptive UKF, congruent with previously mentioned

empirical findings. On the other hand, in a simulation with AUKF that yielded faster and

larger adaptation, matching experimental data, the effects on the rate and amount of
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adaptation were nearly negligible, likely because all auditory prediction errors above the detec-

tion threshold already drove most of the learning.

The other model parameter potentially related to the perceptual acuity is auditory predic-

tion error threshold. In FACTS, auditory prediction error threshold showed a clear effect on

adaptation. It is difficult, however, to interpret our findings because the documented empirical

findings regarding the effect of perceptual acuity on adaptation are largely inconsistent. Even

though some have found a link between perceptual acuity (or auditory error detection abili-

ties) and adaptation extent [26, 85, 86] as mentioned above, several other studies also have

reported that F1 acuity was not associated with the amount of F1 adaptation [87, 88]. Likewise,

pitch acuity was found to be unrelated to pitch adaptation in studies [89, 90]. In addition,

Nault & Munhall [86] also did not find a correlation between perceptual acuity and adaptation

in F2 (unlike F1). Moreover, although Martin et al. [91] reported that two measures of percep-

tual acuity could predict the amount of formant adaptation, the perceptual acuity measures

were from the loudness discrimination and pitch discrimination tasks, rather than formant-

related measures.

In addition, the implicit nature of speech auditory-motor adaptation [19] raises a question

as to whether the methods used for measuring perceptual acuity can accurately probe sensori-

motor mechanisms involved in auditory prediction error detection. Perceptual acuity is mea-

sured explicitly, by the psychometric measures or Just Noticeable Difference (JND) tasks

which prompt participants to report whether they heard a difference between sounds or not.

Although explicit report does not necessarily mean that what is being reported was the result

of an explicit process, it is possible that such acuity measure may fundamentally differ from

the actual sensorimotor mechanisms involved in adaptation, given that participants can often

adapt even when they are not explicitly aware of the perturbation [16, 92]. Taken together, the

relationship between the perceptual acuity and adaptation as well as the relevance of these

model parameters to perceptual acuity and adaptation remain unclear at this time.

Inter-trial variability

The large inter-trial variability in speech production have intrigued many researchers. In the

current FACTS design, although the speech plant noise in the articulators (representing neuro-

muscular noise) can induce some time step-to-time step variability, such inter-time step vari-

ability does not contribute much to inter-trial variability because each trial production is

computed as an average of multiple time steps. Thus, the only source of inter-trial variability is

the task target noise, an account that remains to be investigated in future studies. Nevertheless,

there is some evidence that is in line with FACTS simulations of inter-trial variability.

First, jaw or tongue movement end points for a given vowel target can vary by several milli-

meters across trials, even during natural un-perturbed speech movements generated in a

largely feedforward manner (e.g., [93]). In other words, there is a considerable amount of

inter-trial variability even when movements are likely reaching their targets, suggesting that

the idea of task target noise is plausible. Second, there is evidence that inter-trial variability

may be controlled by the same mechanism during both baseline trials and perturbation trials

[86]. In the study, the authors reported that individuals with high baseline formant variability

also had high formant variability during perturbation trials and the amount of variability in

the two phases did not differ. These accounts are in accordance with FACTS in which a) inter-

trial formant variability is controlled by a single model parameter, task target noise, and b) the

variability remains the same across baseline and perturbation trials. Third, inter-trial variabil-

ity does not seem to be related to the amount of adaptation (Fig 7D). Although Purcell & Mun-

hall [94] reported a significant correlation between inter-trial variability and adaptation, the
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relevance of the finding has been questioned due to an overdifferencing issue in their method-

ology (see [95] for more details). Likewise, Nault & Munhall [86] found a significant correla-

tion between baseline inter-trial variability and adaptation, but the authors also stated that

their finding might be due to undersampling (among other issues), adding that a larger data

set from seven experiments did not find such correlation. Furthermore, Wang & Max [95]

recently demonstrated that reducing or magnifying the perceived inter-trial variability during

the baseline (i.e., before the perturbation trials) changed the overall production variability in

the baseline production, but such changes in perceived and production variability did not

affect the adaptation performances. Hence, our simulations in which inter-trial variability

does not affect adaptation are in agreement with the literature.

Two recent studies found that artificially altering perceived inter-trial formant variability in

the auditory feedback resulted in compensatory changes in formant production variability,

suggesting that inter-trial variability is actively controlled and regulated [95, 96]. In the current

FACTS design, the task target noise variable is defined by a configuration file rather than

being actively controlled during simulations. Nevertheless, FACTS already incorporates sen-

sory noise covariance matrices, so it remains possible to incorporate such mechanism for

tracking and controlling inter-trial production variability.

It should be noted that other computational models of speech implement target noise as

well. One example is GEPPETO, the optimal motor control model that controls a biomechani-

cal model of the tongue, was recently re-developed within a Bayesian framework [97]. In the

model, motor control variables were randomly selected under a probability distribution, intro-

ducing inter-trial variability, a concept analogous to the target noise in the FACTS framework.

In DIVA, auditory targets are defined as time-varying regions, which allow for articulatory

variability within these regions [29].

Unlearning

Although learning behavior was the main scope of this investigation, it should be noted that

the model also generated unlearning behavior in the trials after the perturbation was removed

(i.e., aftereffects). Importantly, such unlearning behavior was also driven by auditory predic-

tion errors in a manner similar to learning. That is, during the aftereffects phase, the unlearn-

ing was faster when auditory prediction and auditory feedback were very different. However,

as auditory prediction and feedback moved closer to one another across the trials, the unlearn-

ing behavior quickly slowed down, suggesting that unlearning may also be driven by auditory

prediction errors.

Neural substrates of adaptation

It is generally accepted that the cerebellum plays a role in computing sensory prediction errors

(e.g., [75]). Much of the supporting evidence comes from the fact that people with cerebellar

diseases show poor adaptation across many effector systems (e.g., gait, [98]; reaching, [32];

speech, [27]). Though applying anodal transcranial direct current stimulation to the cerebel-

lum showed inconsistent effects on reaching adaptation [99–101], one study has found its

enhancing effect on speech adaptation [64]. In addition, cerebellar activity changes associated

with adaptation have also been found (see [102] for review). These lines of evidence are in line

with our model that simulates prediction error-driven adaptation.

In addition to the cerebellum, multiple cortical structures are activated during nonspeech

adaptation [102]. In particular, previous studies found that the posterior parietal cortex (PPC),

which has been associated with task state estimate (or task state estimator), may change during

adaptation (see [53] for a review). Interestingly, several areas of PPC have been found to be
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associated with speech auditory-motor adaptation as well. Shum et al. [103] found that apply-

ing repetitive transcranial magnetic stimulation (rTMS) over the suprmarginal gyrus (SMG)

in the left inferior parietal lobe (IPL) reduced the extent of formant adaptation. Another study

reported that transcranial direct current stimulation (tDCS) to IPL enhanced formant adapta-

tion, even though cathodal tDCS did not reduce adaptation potentially due to tDCS being less

focal than TMS [104]. Crucially, the connectivity between PPC areas (e.g., the left IPL) and

auditory areas (e.g., anterior superior temporal sulcus) are altered following F1 adaptation

[16]. Hence, these lines of evidence are consistent with the present study in that task-level

changes are associated with adaptation.

The premotor cortex (PM) has also been implicated with auditory-motor adaptation.

Multiple functional network connectivity involving the right inferior frontal gyrus (IFG)

were found to be correlated with adaptation extent [105]. Floegel et al. [16] also reported

that the resting-state functional connectivity between the right superior temporal sulcus and

the right IFG was changed after auditory-motor adaptation. Similarly, functional connectiv-

ity between right IFG and right PPC areas, namely posterior SMG and anterior angular

gyrus, was found to be positively correlated with adaptation performances [105]. Given that

the ventral PM is thought to be the location for the task state feedback control law ([38] or

“task action” in [53]), these accounts are also in agreement with our simulations in which

task-level changes in the task state feedback control law (i.e., issuing modified task motor

commands) lead to adaptation.

Recent studies have also emphasized the crucial role of the primary motor cortex (M1)

in auditory-motor learning. The M1 ɣ-aminobutyric acid (GABA) level was found to be

linked with the amount of auditory-motor learning of controlling joystick in directions

associated with sounds [106]. In addition, Tang and colleagues [65] found that formant

adaptation was absent after applying rTMS to the tongue region in M1. Moreover, F1 adap-

tation was enhanced by anodal tDCS of M1 [64, 83]. Given that M1 is known to encode

task-specific muscle synergies in speech [107], it is possible that it may also play a role in

the articulatory-to-task transformation updates. Taken together, though largely speculative,

these narratives demonstrate that the FACTS design and simulation may be neurally

plausible.

Limitations and future directions

In this study, we described the first hierarchical state feedback control model that simulates

speech adaptation. Given the exploratory nature, however, there are multiple limitations in the

model. One apparent limitation is that the amount of simulated adaptation scales with the

amount of perturbation. This is contrary to previous findings showing that the amount of

adaptation can plateau [76] or even decrease in proportion [76, 77, 108] in response to a very

large perturbation. Interestingly, even the amount of online compensation also proportionally

decreases as the perturbation size increases [109], suggesting that there may be a broad mecha-

nism that determines the validity of auditory signals, specifically examining the likelihood of

auditory feedback being internally generated as opposed to externally generated. In a future

study, this functionality may be modeled by adding a probability function in the computations

of auditory prediction errors in the task state estimator.

Additionally, all simulations presented in the study involved perturbations to only F1.

However, previous studies have shown that adaptation also occurs when perturbation is in

both F1 and F2 (e.g., [7]), or only in F2 (e.g., [110]). Indeed, adaptation response can be found

when F1 and F2 are perturbed in the same direction [7, 111] or in the opposite directions [76,
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112]. Therefore, future studies are warranted to examine the model in different adaptation

tasks.

The current version of FACTS also lacks laryngeal control and does not produce pitch.

Adaptation to pitch perturbation is also thought to be implicit (e.g., [18]) and FACTS can be

improved to simulate pitch adaptation that is driven by prediction errors. Previously, a state

feedback control model was developed to control one dimension variable which, theoreti-

cally, can represent pitch frequency [113]. Recently, Weerathunge and colleagues [114] com-

bined the DIVA model with a vocal fold model to develop a neurocomputational model for

laryngeal motor control (LaDIVA). Their model simulated realistic compensation as well as

adaptation response, providing an excellent guide for implementing laryngeal control in

FACTS.

In the current study, we used LWPR for all learnable modules such as forward models and

articulatory-to-task transformation. However, it remains possible that implementing alterna-

tive models such as Deep Neural Network (DNN) could result in different findings. For exam-

ple, a more robust way to invert the updated articulatory-to-task transformation may yield

more adaptation. Future studies should test these possibilities.

Lastly, among the previously mentioned features yet to be implemented in FACTS [38],

sensory delays remain particularly important for several reasons. First, it has long been known

that speech production is sensitive to (artificially) delayed auditory feedback (e.g., [115]). In

fact, adding artificial delays in the auditory feedback reduces [116] or even completely elimi-

nates adaptation response [21, 22]. Second, implementing sensory delays could make FACTS

settings become more universal across different contexts. In the current study, certain mecha-

nisms/parameters had to be explicitly selected (e.g., UKF rather than AUKF and increased

auditory noise) to achieve small online compensation response. A future version of FACTS

might minimally rely on online sensory feedback because sensory information is inherently

delayed, which would lead to small online compensation responses. Third, sensory delays are

likely to play a critical role in multi-sensory integration [67, 117, 118] and implementing sen-

sory delays in the model would lead to a more accurate model that can simulate the complexi-

ties of multi-sensory integration in speech motor control [38]. Fourth, implementing feedback

delays would serve as the first step towards simulating adaptation induced by temporal pertur-

bation (e.g., [16, 119]).

Despite the limitations, the proposed design paves the way for a hierarchical state feedback

control framework to be examined in the context of adaptation. As an initial attempt, our

model demonstrated that 1) auditory prediction errors can drive speech auditory-motor adap-

tation through task-level updates, and 2) adaptation is likely driven by changes to task-level

control rather than (only) to forward predictive models. Additionally, simulating adaptation

with FACTS generated a number of important hypotheses such as: incomplete auditory-motor

adaptation might be due to auditory prediction updates and not conflicts with somatosensa-

tion, and changes in F2 during adaptation to F1 perturbation may be due to the updates in the

task-level representations. These hypotheses should be tested in future studies. Importantly,

given that our model design is closely aligned with the non-speech motor control literature

(e.g., [53]), the suggested framework and architecture may be applicable to future investiga-

tions of non-speech effector systems as well.

Materials and methods

The current version of FACTS was written in Python 3 [120], specifically with the purpose of

being open-source, extendable, and easy to redistribute. All modules and libraries that were

originally developed by other researchers and developers were either re-written or wrapped in
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Python as well. The source code and simulation configurations presented in the study can be

accessed on a public GitHub repository (https://github.com/kwangsk/FACTS). To promote

reproducibility, a YAML file included with the repository can be used to build an Anaconda

virtual environment containing all package dependencies necessary to reproduce the results

presented in the current study.

Notation

In this paper, state variables are denoted with accents, namely the dot (e.g., _x), tilde (e.g., ~x),

and hat (e.g., x̂), which respectively denote derivatives, estimates, and forward predictions

(generated via LWPR). Bold and capital notation describe matrix data structures (e.g., Q) and

LWPR models (F a). Bold and lower case notation describe state variables with more than

dimension (e.g., ~x t containing both position and velocity). Specifically, a higher-level task

representation (vocal tract constriction degrees) is denoted with x (e.g., xt) and a lower-level

articulatory representation is denoted with a (e.g., at). Lastly, Regular (unbold) notation

describe scalars (e.g., βxx) or array data structures with a single dimension (e.g., task position

~xt). Please see Table 1 for a comprehensive list of notation.

Task state

From the data presented in our previous study [80], we found that a discrete number of con-

striction locations could produce a wide range of F1 and F2. Therefore, in the current version

of FACTS, the task parameters are defined as constriction degrees (i.e., distance between the

tongue and the vocal tract wall/palate) at five fixed constriction locations (Fig 8). Of the seven

task parameters, the first five pertain to the tongue, namely tongue tip dental (TT_Den), ton-

gue tip alveolar (TT_Alv), tongue body palatal (TB_Pal), tongue body velar (TB_Vel), and ton-

gue body pharyngeal (TB_Pha). The last two task parameters pertain to the lips, namely lip

aperture (LA) and lip protrusion (LPRO) magnitudes.

The task state (~x t) includes both position (~xt) and velocity (~_xt) of the seven constriction

degrees:

~x t ¼
~xt
~_xt

� �

ð1Þ

The same composition (i.e., seven position and seven velocity) also applies to the task state

prediction (x̂ t).

Articulatory state

The variables that comprise the articulatory state vector (at) in this paper differ from the previ-

ous report [38] because the speech production plant was changed from the CASY model (Con-

figurable Articulator Synthesizer, [121]) to the Maeda model ([122] and also see S2 Appendix).

The Maeda model is a data-driven model of which each input parameter is defined to be a

Principal Component of articulators’ positions retrieved from x-ray images. The model has

been widely used, including in the well known DIVA model [29] as well as in various studies

involving computational simulations (e.g., [54]). It should be noted that the choice of the plant

does not affect our conclusions since FACTS is modularly designed to be able to work with dif-

ferent plant models and to generate equivalent simulations.

The articulatory state in the current version of the model is, therefore, defined as: jaw height

(JA), tongue height (TG), tongue shape (TS), tongue apex (TA), lip height (LH), and lip pro-

trusion (LP). These variables are expressed in the units of the Maeda Principal Component,
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which we refer as M in this paper. The common range for M is from −3 to 3, which can pro-

duce most sounds across the vowel space [80]. The Maeda model has one more parameter

called Larynx, which controls the overall length of the larynx but the effect of the parameter on

F1 and F2 was relatively minimal, so it was excluded from our state variable and its neutral

Table 1. Notation for FACTS. Bold and capital notation describe matrix data structures (e.g., Q) and LWPR models

(F a). Regular (unbold) notation describe scalars (e.g., βxx) or array data structures with a single dimension (e.g., task

position ~xt).

Notation General FACTS variables

x Task state based on vocal tract constriction degrees (both position and velocity)

a Articulatory state describing articulatory position and velocity

η Gaussian random noise added to various variables such as task target, plant, and sensory feedback

ysomato Somatosensory feedback

yaud Auditory feedback

Δysomato Somatosensory prediction error

Δyaud Auditory prediction error

t Time step

z−1 Time step delay operator

F a Forward prediction model for the articulatory state

F x Forward prediction model for the task state

Hsomato Forward prediction model for the somatosensory feedback

Haud Forward prediction model for the auditory feedback

M Mass matrix in the task state feedback control law

B Damping matrix in the task state feedback control law

K Stiffness matrix in the task state feedback control law

GN Gating vector for the neutral attractor

BN Damping vector in the neutral attractor

KN Stiffness vector in the neutral attractor

Unscented Kalman Filter variables

K Kalman gain for the state correction.

Pxx Prior covariance matrix for the task state sigma points

Q Process noise scale, which is added in the prior covariance matrix

Pxy Cross covariance of the task state and sensory (auditory) feedback sigma points

Pyy Covariance of the auditory feedback sigma points

Adaptive Unscented Kalman Filter (AUKF) variables

� Square of the auditory prediction errors, inversely weighted by the auditory noise covariance matrix

(Pyy)

γ Error threshold for AUKF. Only when � is larger than this threshold, AUKF is activated

βxx Multiplicative gain for the prior covariance noise matrix of the next time step (Pxx(t + 1)) when AUKF is

activated

βQ Multiplicative gain for the process noise matrix of the next time step (Q(t + 1)) when AUKF is activated

βxy Multiplicative gain for the cross covariance noise matrix of the current time step (Pxy(t)) when AUKF is

activated

Simulation variables

F1 First formant frequency

F2 Second formant frequency

F3 Third formant frequency

https://doi.org/10.1371/journal.pcbi.1011244.t001
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position (i.e., 0) was given to the Maeda model [80]. As a result, the articulatory state in

FACTS consists of six position Maeda parameters and their associated velocities. The articula-

tory state at a time step (t) was defined as:

at ¼
at
_at

� �

ð2Þ

Although not explicitly described here, the articulatory state estimate (~at) and the articula-

tory prediction (ât) are also defined with the same composition (six position and six velocity

state variables).

Modules

The principles of object-oriented programming were applied to create a modular code design

ideal for testing multiple FACTS architectures and implementations. The Model class (Model.
py) is responsible for dynamically building a model based on a chosen architecture. The model

architectures compared in this work, for example, are implemented as a series of child classes

inheriting from the parent class (Model). A Model object is composed of a set of modules,

which correspond to the subfunctions of the theoretical FACTS model. Each module is also

built with inheritance structure so that different implementations of each module can be easily

tested and compared. The main script (FACTS.py) constructs the Model object and its mod-

ules based on the settings defined in a configuration file formatted in INI, and calls the object’s

run method in a nested loop to generate simulations across time steps and trials. This code

design is easily extensible because new architectures and module implementations can be

added without disrupting the existing code.

Gestural score (TADA.py). As in the previous FACTS, the gestural score module is a sim-

plified version of several components from the Task Dynamics Application model (TADA

Fig 8. Task state variables. Of the five tongue variables, the first two pertaining to tongue tip are defined as tongue tip dental (TT_Den) and tongue tip alveolar

(TT_Alv) constriction degrees, each defined at 42.9˚ and 58.0˚ from the left part of the horizontal axis (0˚). The tongue body variables are tongue body palatal

(TB_Pal), tongue body velar (TB_Vel), and tongue body pharyngeal (TB_Pha) which are defined at 92.4˚, 121.1˚, and 179.8˚ respectively. The lip aperture (LA)

is defined as the distance between the upper lip and the lower lip. The lip protrusion (LPRO) is the horizontal length of the upper (or lower) lip. Here, the task

state of the initial position used for each trial is depicted as an example.

https://doi.org/10.1371/journal.pcbi.1011244.g008
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[66]). The format of gestural scores (e.g., KimetalAdapt.G for adaptation simulations) includes

the task variable (TB_Pal), onset time step (0), offset time step (40), task target (22.1 mm), stiff-

ness coefficient (14), and damping coefficient (1). The file also includes information on articu-

latory weighting and other TADA parameters although they are not currently implemented in

FACTS. By default, TADA.py, which reads the gestural score files, is configured to assume that

each time step is defined as 5 ms. The module also has the capability to add Gaussian noise to

the target specified in the gestural score, yielding a slightly altered task target (xtarget).
Task state feedback control law (TaskSFCLaw.py). The task state feedback control law is

based on the Task Dynamics model developed by Saltzman & Munhall [48], and is defined as:

€xt ¼ M� 1ð� B~_xt � Kð~xt � xtargetÞÞ ð3Þ

where the mass matrix (M), damping coefficient matrix (B), and stiffness coefficient matrix

(K) of the second-order dynamical system model are determined based on the corresponding

values configured in the gestural score file. The computed task acceleration €xt which we refer

as task motor command is sent to the articulatory state feedback control law. xtarget is the task

target for time step t, defined by TADA.py (in the simulations, the target remained constant

across all time steps and trials). In the modified hierarchical architecture (Design C), the task

motor command’s copy is also sent to the task state estimator (i.e., task efference copy).

Articulatory state feedback control law (ArticSFCLaw.py). The articulatory state feed-

back control law, based on the Forward Task Dynamics model, computes €at which is the artic-

ulatory acceleration or articulatory motor command [48]:

€at ¼ Jð~atÞ
y
€xt � Jð~atÞ

y _Jð~at; ~_at Þ~_at þ ðIn � Jð~atÞ
yJð~atÞÞ€ad þ €aN ð4Þ

In this equation, Jð~atÞ is the Jacobian Matrix (articulatory-to-task state) given the articula-

tory state estimate, which is computed from the naïve task transformation LWPR (i.e., not

learned, but updating this Jacobian matrix has minimal effect on adaptation as shown in Fig

5B). Effectively, the Moore-Penrose pseudoinverse of the Jacobian matrix is denoted as Jð~atÞ
y
.

The true derivative of the Jacobian over time is expressed as _Jð~at; ~_atÞ. In our design, the deriva-

tive of the Jacobian is not readily available as it is in TADA, because the relationship between

articulatory variables to task variables is not determined from a set of mathematical (geomet-

ric) equations. Rather, the Jacobian is retrieved from a LWPR model that was trained to pre-

dict task position from articulatory position. Therefore, we calculate a rough estimate of the

derivative by computing the midpoint of the Jacobian at the current time step and the Jacobian

at the previous time step:

_Jð~at ; ~_at Þ ¼
Jð~atÞ � Jð~at� 1Þ

0:005
ð5Þ

where the denominator, 0.005, refers to the duration of each time step in seconds (i.e., 5 ms).

The third term, ðIn � Jð~atÞ
yJð~atÞÞ€ad, is a supplementary dissipative acceleration term that is

implemented to remove non-negligible and undesirable velocities [48]. This term is referred as

null projection term, because it works as an orthogonal projection operator to remove move-

ments in the null space. The In is an n × n identity matrix in which n equals 7 to match the task

position dimension. This null projection term also includes €ad which is the damping accelera-

tion vector:

€ad ¼ BN~_at ð6Þ
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The neutral attractor damping term, BN is also used for the last term of the articulatory

motor command, the neutral attractor [48]:

€aN ¼ GNð� BN~_at Þ � KNð~at � aNÞ ð7Þ

which serves the purpose of moving any non-active articulators (i.e., not assigned to move

based on the gestural score) towards a pre-defined neutral position. The gating vector, GN,

makes sure that only the non-active articulators are chosen in this term. The neutral damping

term, BN, and stiffness term, KN, are predefined as global variables (globalvariables.py). Lastly,

aN is the neutral (resting) position defined as a global variable, which was always set to be the

same as initial position in the study. The resulting articulatory motor command is sent to both

the plant as well as the articulatory state estimator (articulatory efference copy).

Plant (ArticKinematics.py, AcousticSynthesis.py, Maeda.py). In this module, a Gaussian

plant noise is first added to the articulatory motor command. The plant noise reflects a combi-

nation of various sources of noise that exist in the neurophysiology of the speech motor system

(e.g., cellular, electrical/action potentials, synaptic, motor noise, see Faisal et al. [123] for in-

depth discussion). The amount of plant noise is determined by the plant noise scale specified

in the configuration file (default 0.05), which is multiplied by a normalization vector to allow

users to control the amount of noise added to each Maeda parameter.

The articulatory motor command, combined with noise, is then integrated using the sol-
ve_ivp function, an Ordinary Differential Equation (ODE) solver included in the scipy.inte-
grate sub-package [124]. This function is called along with various input parameters in order

to specifically mimic the ODE45 function in Matlab used in [38]. The integration requires the

true articulatory state of the previous step, at − 1.

The resulting articulatory state, at, is sent to AcousticSynthesis class which adds sensory

noise. Importantly, this module also generates acoustic output (i.e., formant frequencies). The

module relies on the plant model, Maeda, whose acoustic output becomes auditory signals.

During the initial simulations, we realized that F1 and F2 outputs of the model had a mini-

mum resolution of *8.5 Hz. This resolution was not satisfactory given that some contexts

(i.e., online compensation) required a magnitude of changes smaller than the Maeda model’s

default formant resolution. Therefore, we updated the original Maeda source code to search

for the spectral peaks with a higher resolution (see S2 Appendix). The modified Maeda (High

resolution Maeda or HR Maeda) is capable of producing F1 and F2 at 1 Hz resolution. The HR

Maeda was wrapped in Python using an open-source software tool, Simplified Wrapper and

Interface Generator (SWIG) [125]. The higher resolution auditory signals (i.e., F1, F2, and F3)

are fed into the AuditoryPerturbation class as described below.

Auditory perturbation (AuditoryPerturbation.py). Auditory feedback can be perturbed

either in Hz or cents depending on the perturbation mode set in a given configuration file.

The specific time steps and trials can be set to be perturbed from the configuration file. The

resulting perturbed (or unperturbed) auditory feedback is then picked up by auditory system

in the SensorySystemNoise class.

Sensory noise (SensorySystemNoise.py). Both somatosensory and auditory signals are

added with noise. Each noise is specified by noise scale factors that can be specified in the con-

figuration file. In addition, a normalization factor giving default values for each formant is

used to scale the auditory noise to a relevant magnitude. By default, the vector is set as [532

Hz, 1759 Hz, 2589 Hz], corresponding to a typical male speaker’s production of F1, F2, and F3

of the vowel (/ε/) respectively. The somatosensory noise is also added in a similar manner.

State estimators (ArticStateEstimator.py, TaskStateEstimator.py). The FACTS state

estimators are designed with Unscented Kalman Filter (UKF) processes [38]. The first step of
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UKF is applying unscented transform of the state and computing the mean and covariance of

the (transformed) sigma points. In this section, the Kalman filtering processes and variables

will not be described in detail except for some instances of multiplying gains to several covari-

ance matrices of the unscented transformed sigma points (i.e., AUKF). For more details on the

general UKF processes, see [55] or [38].

After the unscented transform, the mean sigma points of the articulatory state (~at� 1, note

that we did not change the notation for unscented transformed variables for simplicity)

become an input to the articulatory state prediction (F a), a forward model that predicts the

articulatory state:

ât ¼ F að~at� 1; €atÞ ð8Þ

The prediction also requires the efference copy of articulatory motor command (€at). In

Design C, the articulatory prediction ât is then used to predict somatosensory feedback

through the somatosensory prediction LWPR model (Hsomato):

ŷsomatot ¼ HsomatoðâtÞ ð9Þ

The resulting predicted somatosensory feedback is compared with the actual somatosen-

sory feedback to compute the somatosensory prediction error:

Dysomatot ¼ ysomatot � ŷsomatot ð10Þ

For state correction, the somatosensory prediction error is then multiplied by a Kalman

gain (KDysomatot ). The state correction term is added to the original state prediction to deter-

mine the final articulatory state estimate:

~at ¼ ât þKDysomatot ð11Þ

In Design A and B, the articulatory state estimator also makes use of the auditory prediction

model (Haud) to predict auditory feedback, in addition to the the somatosensory prediction

(Hsomato). In these designs, the task state estimator is implemented as the articulatory-to-task

state transformation LWPR (Task_model). Hence, the task state estimator would “estimate”

task state based on the current articulatory state estimate [38].

In Design C, the task state estimator is designed as a separate state estimator that uses audi-

tory feedback. The first step of the task state estimator also transforms the articulatory state

estimate into the task state using the same LWPR model (Task_model), but the articulatory

state estimate of the previous time step is transformed into the task state estimate of the previ-

ous time step:

~x t� 1 ¼ Task modelð~at� 1Þ ð12Þ

The state estimate from the previous time step (~x t� 1) can then be used for the task state pre-

diction (F x):

x̂ t ¼ F xð~x t� 1; €xtÞ ð13Þ

where €xt is the efference copy of the task motor command. Based on the resulting task state

prediction (x̂t), auditory prediction is generated:

ŷaudt ¼ Haudðx̂ tÞ ð14Þ

which can be subtracted from the actual auditory feedback to compute auditory prediction
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errors (auditory prediction errors):

Dyaudt ¼ yaudt � ŷ
aud
t ð15Þ

The resulting auditory prediction errors can be used to compute state correction (K2Dyaudt ),

which is added to the task prediction to determine the final task state estimate (~x t):

~x t ¼ x̂ t þK2Dyaudt ð16Þ

where K2 denotes the Kalman gain for task state corrections. Note that after the last time step

for each utterance, the articulatory state estimates (~at� 1) and their corresponding final task

state estimates (~x t) saved in the error memory buffer are used to update the task transforma-

tion LWPR (see the LWPR training and update section for more details).

For task state corrections involving K2, a simple AUKF design is implemented. Specifically,

the AUKF would either be activated or deactivated depending on the magnitude of �, which is

the square of the auditory prediction errors, inversely weighted by the auditory noise covari-

ance matrix:

� ¼ Dyaud>t P� 1yy Dy
aud
t ð17Þ

where Pyy refers to sensory (auditory) sigma points covariance matrix. If this term is large, this

means that the Kalman filter is expecting large variance in the auditory feedback, which would

make the filter less sensitive to auditory prediction errors. This variance term is used as an

inverse weight (i.e., P� 1yy ) so that the resulting � can account for the variance in the auditory sys-

tem in addition to the size of auditory prediction errors. Whenever � is larger than γ which is

set to 50 for all simulations in the study, the AUKF is activated by multiplying three UKF filter

terms by fixed scales such that:

Pxxðt � 1Þ ¼

bxxP
def
xx if � > g

Pdef
xx otherwise

8
<

:

Qðt � 1Þ ¼

bQQ
def if � > g

Qdef otherwise

8
<

:

PxyðtÞ ¼
bxyP

def
xy if � > g

Pdef
xy otherwise

8
><

>:

ð18Þ

The superscript (def) refers to default matrices in non-adaptive UKF. Pxx denotes the prior

covariance matrix of the task state estimate that is used to determine the size of the spread in

the sigma points during unscented transformation. Q represents the process noise scale, which

is added in the prior covariance matrix. Multiplying these terms by a scaling factor does not

change the model behavior in the given time step, because the unscented transformation has

already been computed. Instead, the adapted (i.e., multiplied) terms will increase the spread of

the next time step’s sigma points, which would cause the filter to be more sensitive to auditory

feedback (i.e., larger Kalman gain) in that time step. The last variable listed (Pxy) in the Eq (18)

is the cross covariance of the task state and auditory feedback. This variable, on the other
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hand, is directly involved in Kalman gain calculation in the current time step:

KðtÞ ¼ PxyðtÞP
� 1

yy
ðtÞ ð19Þ

Whenever the � is not larger than γ, the AUKF mode is deactivated, and the filter would act

as the regular (non-adaptive) UKF with its default variable values. In many applications of the

AUKF, the filter offers more versatility by setting AUKF scaling factors to be dependent on �.

In contrast, we use simple fixed (i.e., non-changing) gain factors (βxx, βQ, βxy) to multiply those

terms as this is the first attempt to implement AUKF in the state feedback control/FACTS

model. Nevertheless, we found that this simple AUKF implementation was able to generate

realistic adaptation simulations.

LWPR training and update

The LWPR source code was wrapped in Python 3.6.10 using SWIG [125]. In order to train the

LWPR models, a large data set of Maeda model inputs and outputs were generated via a ran-

dom walk algorithm (see a similar data set in Gaines et al. [80]). For each articulatory configu-

ration, we extracted the corresponding task parameters from the Maeda vocal tract shape

coordinates’ horizontal axis (see Fig 8). Thus, the random walk approach produced a near-

complete data set of Maeda input parameters (see S2 Appendix for more details) and their cor-

responding task state as well as formant values. These allowed us to train the articulatory state

prediction (F a), task state prediction (F x in Design C), somatosensory prediction (Hsomato),

and auditory prediction (Haud) LWPR models. For each LWPR model, we trained several pro-

totype models and chose a model that produced the most accurate results. The final LWPR

models were saved in binary format files, which could be called naïve (i.e., not adapted) mod-

els. Once these models are loaded in FACTS simulations, they can be continuously updated in

response to auditory perturbation using the built-in LWPR update method (LWPR.update).
Nevertheless, the updated LWPR models do not overwrite the binary format files so that each

simulation run can call and use the naïve LWPR models.

During adaptation simulations, each LWPR module is updated by using its built-in func-

tion. All time steps saved in the error memory are used to update a given LWPR module (e.g.,

articulatory-to-task transformation in Design C). There are LWPR parameters that can be

tuned to affect learning to a degree, but they also affect the stability of LWPR models much

like the stability versus plasticity dilemma (e.g., [126]). Thus, these parameters cannot be

changed drastically, so all simulations were done with fixed LWPR parameters that would

make the LWPR model stable. More details on these parameters can be found in S3 Appendix.

Simulations

All simulations of adaptation generated in the current study involved repeated productions of

the vowel, /ε/, which were produced for 40 time steps (200 ms). /ε/ was chosen because the

vowel is one of the most extensively studied vowels in F1 adaptation studies. It should be

noted that adaptive mechanisms in the FACTS model have no linguistic constraints, but a

thorough exploration of various vowels in adaptation remains to be investigated both experi-

mentally and computationally (see Discussion).

The vowel was produced using a gestural score with a target of 22.1 mm constriction degree

for the tongue body at the hard palate, driving the tongue to move towards this state from

from its initial position. The task target (22.1 mm) defined in the gestural score file was chosen

based on the fact that the corresponding first formant frequency (530 Hz) was close to the

male speakers’ F1 production for the vowel [127]. In these simulations, we wanted the model

to quickly achieve the task target from the initial position so that steady-state vowel portion
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composed most of the utterance. For that reason, the initial position (22.19 mm) was config-

ured to be very close to the target vowel.

It is understood that auditory feedback-based corrections are minimal, if any, in short

vowel productions (i.e., < 150 ms). Hence, the adaptation simulations were designed to ignore

sensory feedback-based corrections (i.e., no online compensation). Instead, auditory feedback

or its related information (i.e., the final state estimate updated by state correction signals in

Design A and C) were stored in an “error memory” if the auditory prediction errors were

larger than a given threshold. This memory was accessed at the end of each trial to update the

model in the subsequent production. In order to rule out the possibility that our findings are

limited to the situations without online compensation, however, we also tested all simulations

with online compensation and confirmed that these results were comparable with the simula-

tions presented in the study.

The first 10 time steps were designed to simulate non-vocalized movement (e.g., initial jaw

opening from the resting position before the voicing of the vowel). Hence, for each production,

we considered only the latter 30 time steps as (simulated) acoustic data. For plotting adapta-

tion, an average of each production was computed from the mid-utterance time steps (i.e.,

middle 10 time steps of the 30 time steps) of “acoustic” data.

In all simulations, the auditory perturbation was configured to match the experimental

setup. For example, 400 cents up-shift in F1 was applied in simulations compared with Kim &

Max [19]. Likewise, simulations for Mitsuya et al. [61] had the perturbation increased or

decreased by 4 Hz each trial as specified in the study. For Mollaei et al. [62], the simulation

applied 454 cents up-shift to match with the 30% in Hz up-shift perturbation in the study.

Some simulation results were normalized by either subtracting the baseline F1 (530 Hz) or

dividing by the baseline F1 and F2 values (530 Hz and 1775 Hz respectively) as in Fig 4C.

Because fitting FACTS simulations to empirical data was not the main scope of the study, only

a few model parameters were slightly changed by visual inspections and trial-and-error

attempts. Here, we presented the simulations run with parameters that best mimicked the

empirical data, which are listed in Table 2.

For the online compensation simulation (Fig 6), the same vowel was used, so most of the

gestural score parameters were kept the same (e.g., task target). However, the length of the pro-

duction was set to be longer (80 time steps) in order to simulate the mid-utterance perturba-

tion. Another difference from the adaptation simulations was that the AUKF was not used

with reasons described in the Results section. All parameters of FACTS remained the same as

in the simulation adaptation except the auditory noise level, which was doubled (Table 2). All

FACTS simulations presented in the current study can be found on an OSF data repository

(DOI: 10.17605/OSF.IO/W37HV).

Experimental data used in comparisons with the simulations

All experimental data were retrieved from studies involving the same vowel (/ε/) production

(or monosyllabic utterances with the same vowel) as our simulations. The data set included in

Figs 3, 4, 7, and S3 Appendix was the control group’s (i.e., people who do not stutter) average

data in Kim & Max [19]. The data set was retrieved from the text files available on the study’s

Open Science Framework (OSF) data repository. For our model simulations, the empirical

data was converted from Cents to Hertz using the baseline value of 530 Hz by:

FHz ¼ 530� 2
Fcents
1200 ð20Þ

In addition, the experimental data set used in Fig 4 was from the English native speakers

reported in Mitsuya et al. [61]. The group average data was extracted from the study by

PLOS COMPUTATIONAL BIOLOGY Prediction errors drive auditory-motor adaptation in FACTS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011244 July 28, 2023 31 / 39

https://doi.org/10.17605/OSF.IO/W37HV
https://doi.org/10.1371/journal.pcbi.1011244


WebPlotDigitizer, a free web-based data extraction tool [128]. Lastly, a data set came from the

control group’s (i.e., people without Parkinson’s disease) average data in Mollaei et al. [62],

which was also extracted using WebPlotDigitizer.
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Fig 3 Design C 1 1 1 0.005 5 0

Fig 4B (Top) 10 10 6 0.005 5 0

B (Bottom) 4 4 4 0.005 35 0

C 2 2 2 0.005 20 0
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10 10 6 0.005 30 0

10 10 6 0.005 50 0

Fig 7C 10 10 6 0.0025 5 0

10 10 6 0.005 5 0

10 10 6 0.01 5 0

Fig 7D 10 10 6 0.005 5 0

10 10 6 0.005 5 0.2

10 10 6 0.005 5 0.4

https://doi.org/10.1371/journal.pcbi.1011244.t002

PLOS COMPUTATIONAL BIOLOGY Prediction errors drive auditory-motor adaptation in FACTS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011244 July 28, 2023 32 / 39

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011244.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011244.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011244.s003
https://doi.org/10.1371/journal.pcbi.1011244.t002
https://doi.org/10.1371/journal.pcbi.1011244


Investigation: Kwang S. Kim, Jessica L. Gaines, Benjamin Parrell, Vikram Ramanarayanan,

Srikantan S. Nagarajan, John F. Houde.

Methodology: Kwang S. Kim, Jessica L. Gaines, Benjamin Parrell, Vikram Ramanarayanan,

Srikantan S. Nagarajan, John F. Houde.

Project administration: Benjamin Parrell, Vikram Ramanarayanan, Srikantan S. Nagarajan,

John F. Houde.

Resources: Benjamin Parrell, Vikram Ramanarayanan, Srikantan S. Nagarajan, John F.

Houde.

Software: Kwang S. Kim, Jessica L. Gaines, Benjamin Parrell, Vikram Ramanarayanan, Srikan-

tan S. Nagarajan, John F. Houde.

Supervision: Benjamin Parrell, Vikram Ramanarayanan, Srikantan S. Nagarajan, John F.

Houde.

Validation: Kwang S. Kim, Jessica L. Gaines, Benjamin Parrell, Vikram Ramanarayanan, Sri-

kantan S. Nagarajan, John F. Houde.

Visualization: Kwang S. Kim, Benjamin Parrell, Vikram Ramanarayanan, Srikantan S. Nagar-

ajan, John F. Houde.

Writing – original draft: Kwang S. Kim.

Writing – review & editing: Kwang S. Kim, Jessica L. Gaines, Benjamin Parrell, Vikram

Ramanarayanan, Srikantan S. Nagarajan, John F. Houde.

References
1. Caudrelier T, Rochet-Capellan A. Changes in speech production in response to formant perturbations:

An overview of two decades of research,. In: Fuchs S, Cleland J, Rochet-Capellan A, editors. Speech

production and perception: Learning and memory.. vol. 6 of Speech Production and Perception. Peter

Lang; 2019. p. 15–75. Available from: https://hal.archives-ouvertes.fr/hal-02426327.

2. Karlin R, Naber C, Parrell B. Auditory Feedback Is Used for Adaptation and Compensation in Speech

Timing. Journal of speech, language, and hearing research: JSLHR. 2021; 64(9):3361–3381. https://

doi.org/10.1044/2021_JSLHR-21-00021 PMID: 34310188

3. Kothare H, Raharjo I, Ramanarayanan V, Ranasinghe K, Parrell B, Johnson K, et al. Sensorimotor

adaptation of speech depends on the direction of auditory feedback alteration. The Journal of the

Acoustical Society of America. 2020; 148(6):3682. https://doi.org/10.1121/10.0002876 PMID:

33379892

4. Kitchen NM, Kim KS, Wang PZ, Hermosillo RJ, Max L. Individual sensorimotor adaptation characteris-

tics are independent across orofacial speech movements and limb reaching movements. Journal of

Neurophysiology. 2022. https://doi.org/10.1152/jn.00167.2022 PMID: 35946809

5. Parrell B, Ivry RB, Nagarajan SS, Houde JF. Intact Correction for Self-Produced Vowel Formant Vari-

ability in Individuals With Cerebellar Ataxia Regardless of Auditory Feedback Availability. Journal of

speech, language, and hearing research: JSLHR. 2021; 64(6S):2234–2247. https://doi.org/10.1044/

2021_JSLHR-20-00270 PMID: 33900786

6. Abur D, Subaciute A, Daliri A, Lester-Smith RA, Lupiani AA, Cilento D, et al. Feedback and Feedfor-

ward Auditory-Motor Processes for Voice and Articulation in Parkinson’s Disease. Journal of speech,

language, and hearing research: JSLHR. 2021; 64(12):4682–4694. https://doi.org/10.1044/2021_

JSLHR-21-00153 PMID: 34731577

7. Kim KS, Daliri A, Flanagan JR, Max L. Dissociated Development of Speech and Limb Sensorimotor

Learning in Stuttering: Speech Auditory-motor Learning is Impaired in Both Children and Adults Who

Stutter. Neuroscience. 2020; 451:1–21. https://doi.org/10.1016/j.neuroscience.2020.10.014 PMID:

33091464

8. Mazzoni P, Krakauer JW. An implicit plan overrides an explicit strategy during visuomotor adaptation.

The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2006; 26

(14):3642–3645. https://doi.org/10.1523/JNEUROSCI.5317-05.2006 PMID: 16597717

PLOS COMPUTATIONAL BIOLOGY Prediction errors drive auditory-motor adaptation in FACTS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011244 July 28, 2023 33 / 39

https://hal.archives-ouvertes.fr/hal-02426327
https://doi.org/10.1044/2021_JSLHR-21-00021
https://doi.org/10.1044/2021_JSLHR-21-00021
http://www.ncbi.nlm.nih.gov/pubmed/34310188
https://doi.org/10.1121/10.0002876
http://www.ncbi.nlm.nih.gov/pubmed/33379892
https://doi.org/10.1152/jn.00167.2022
http://www.ncbi.nlm.nih.gov/pubmed/35946809
https://doi.org/10.1044/2021_JSLHR-20-00270
https://doi.org/10.1044/2021_JSLHR-20-00270
http://www.ncbi.nlm.nih.gov/pubmed/33900786
https://doi.org/10.1044/2021_JSLHR-21-00153
https://doi.org/10.1044/2021_JSLHR-21-00153
http://www.ncbi.nlm.nih.gov/pubmed/34731577
https://doi.org/10.1016/j.neuroscience.2020.10.014
http://www.ncbi.nlm.nih.gov/pubmed/33091464
https://doi.org/10.1523/JNEUROSCI.5317-05.2006
http://www.ncbi.nlm.nih.gov/pubmed/16597717
https://doi.org/10.1371/journal.pcbi.1011244


9. Taylor JA, Krakauer JW, Ivry RB. Explicit and implicit contributions to learning in a sensorimotor adap-

tation task. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2014;

34(8):3023–3032. https://doi.org/10.1523/JNEUROSCI.3619-13.2014 PMID: 24553942

10. Albert ST, Jang J, Modchalingam S, ’t Hart BM, Henriques D, Lerner G, et al. Competition between

parallel sensorimotor learning systems. eLife. 2022; 11:e65361. https://doi.org/10.7554/eLife.65361

PMID: 35225229

11. Kim HE, Parvin DE, Ivry RB. The influence of task outcome on implicit motor learning. eLife. 2019; 8:

e39882. https://doi.org/10.7554/eLife.39882 PMID: 31033439

12. Leow LA, Marinovic W, de Rugy A, Carroll TJ. Task errors contribute to implicit aftereffects in sensori-

motor adaptation. The European Journal of Neuroscience. 2018; 48(11):3397–3409. https://doi.org/

10.1111/ejn.14213 PMID: 30339299

13. Leow LA, Marinovic W, de Rugy A, Carroll TJ. Task Errors Drive Memories That Improve Sensorimotor

Adaptation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2020;

40(15):3075–3088. https://doi.org/10.1523/JNEUROSCI.1506-19.2020 PMID: 32029533

14. Miyamoto YR, Wang S, Smith MA. Implicit adaptation compensates for erratic explicit strategy in

human motor learning. Nature Neuroscience. 2020; 23(3):443–455. https://doi.org/10.1038/s41593-

020-0600-3 PMID: 32112061

15. Morehead JR, Xivry JJOd. A Synthesis of the Many Errors and Learning Processes of Visuomotor

Adaptation; 2021. Available from: https://www.biorxiv.org/content/10.1101/2021.03.14.435278v1.

16. Floegel M, Fuchs S, Kell CA. Differential contributions of the two cerebral hemispheres to temporal

and spectral speech feedback control. Nature Communications. 2020; 11(1):2839. https://doi.org/10.

1038/s41467-020-16743-2 PMID: 32503986

17. Munhall KG, MacDonald EN, Byrne SK, Johnsrude I. Talkers alter vowel production in response to

real-time formant perturbation even when instructed not to compensate. The Journal of the Acoustical

Society of America. 2009; 125(1):384–390. https://doi.org/10.1121/1.3035829 PMID: 19173425

18. Keough D, Hawco C, Jones JA. Auditory-motor adaptation to frequency-altered auditory feedback

occurs when participants ignore feedback. BMC neuroscience. 2013; 14:25. https://doi.org/10.1186/

1471-2202-14-25 PMID: 23497238

19. Kim KS, Max L. Speech auditory-motor adaptation to formant-shifted feedback lacks an explicit com-

ponent: Reduced adaptation in adults who stutter reflects limitations in implicit sensorimotor learning.

The European Journal of Neuroscience. 2021; 53(9):3093–3108. https://doi.org/10.1111/ejn.15175

PMID: 33675539

20. Lametti DR, Quek MYM, Prescott CB, Brittain JS, Watkins KE. The perils of learning to move while

speaking: One-sided interference between speech and visuomotor adaptation. Psychonomic Bulletin

& Review. 2020; 27(3):544–552. https://doi.org/10.3758/s13423-020-01725-8 PMID: 32212105

21. Max L, Maffett DG. Feedback delays eliminate auditory-motor learning in speech production. Neuro-

science Letters. 2015; 591:25–29. https://doi.org/10.1016/j.neulet.2015.02.012 PMID: 25676810

22. Shiller DM, Mitsuya T, Max L. Exposure to Auditory Feedback Delay while Speaking Induces Percep-

tual Habituation but does not Mitigate the Disruptive Effect of Delay on Speech Auditory-motor Learn-

ing. Neuroscience. 2020; 446:213–224. https://doi.org/10.1016/j.neuroscience.2020.07.041 PMID:

32738430

23. Brudner SN, Kethidi N, Graeupner D, Ivry RB, Taylor JA. Delayed feedback during sensorimotor learn-

ing selectively disrupts adaptation but not strategy use. Journal of Neurophysiology. 2016; 115

(3):1499–1511. https://doi.org/10.1152/jn.00066.2015 PMID: 26792878

24. McDougle SD, Taylor JA. Dissociable cognitive strategies for sensorimotor learning. Nature Communi-

cations. 2019; 10(1):40. https://doi.org/10.1038/s41467-018-07941-0 PMID: 30604759

25. Schween R, Hegele M. Feedback delay attenuates implicit but facilitates explicit adjustments to a

visuomotor rotation. Neurobiology of Learning and Memory. 2017; 140:124–133. https://doi.org/10.

1016/j.nlm.2017.02.015 PMID: 28257877

26. Daliri A, Dittman J. Successful auditory motor adaptation requires task-relevant auditory errors. Journal

of Neurophysiology. 2019; 122(2):552–562. https://doi.org/10.1152/jn.00662.2018 PMID: 31215301

27. Parrell B, Agnew Z, Nagarajan S, Houde J, Ivry RB. Impaired Feedforward Control and Enhanced

Feedback Control of Speech in Patients with Cerebellar Degeneration. The Journal of Neuroscience:

The Official Journal of the Society for Neuroscience. 2017; 37(38):9249–9258. https://doi.org/10.1523/

JNEUROSCI.3363-16.2017 PMID: 28842410

28. Guenther FH. Neural Control of Speech. Cambridge, MA, USA: MIT Press; 2016.

29. Tourville JA, Guenther FH. The DIVA model: A neural theory of speech acquisition and production.

Language and Cognitive Processes. 2011; 26(7):952–981. https://doi.org/10.1080/

01690960903498424 PMID: 23667281

PLOS COMPUTATIONAL BIOLOGY Prediction errors drive auditory-motor adaptation in FACTS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011244 July 28, 2023 34 / 39

https://doi.org/10.1523/JNEUROSCI.3619-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24553942
https://doi.org/10.7554/eLife.65361
http://www.ncbi.nlm.nih.gov/pubmed/35225229
https://doi.org/10.7554/eLife.39882
http://www.ncbi.nlm.nih.gov/pubmed/31033439
https://doi.org/10.1111/ejn.14213
https://doi.org/10.1111/ejn.14213
http://www.ncbi.nlm.nih.gov/pubmed/30339299
https://doi.org/10.1523/JNEUROSCI.1506-19.2020
http://www.ncbi.nlm.nih.gov/pubmed/32029533
https://doi.org/10.1038/s41593-020-0600-3
https://doi.org/10.1038/s41593-020-0600-3
http://www.ncbi.nlm.nih.gov/pubmed/32112061
https://www.biorxiv.org/content/10.1101/2021.03.14.435278v1
https://doi.org/10.1038/s41467-020-16743-2
https://doi.org/10.1038/s41467-020-16743-2
http://www.ncbi.nlm.nih.gov/pubmed/32503986
https://doi.org/10.1121/1.3035829
http://www.ncbi.nlm.nih.gov/pubmed/19173425
https://doi.org/10.1186/1471-2202-14-25
https://doi.org/10.1186/1471-2202-14-25
http://www.ncbi.nlm.nih.gov/pubmed/23497238
https://doi.org/10.1111/ejn.15175
http://www.ncbi.nlm.nih.gov/pubmed/33675539
https://doi.org/10.3758/s13423-020-01725-8
http://www.ncbi.nlm.nih.gov/pubmed/32212105
https://doi.org/10.1016/j.neulet.2015.02.012
http://www.ncbi.nlm.nih.gov/pubmed/25676810
https://doi.org/10.1016/j.neuroscience.2020.07.041
http://www.ncbi.nlm.nih.gov/pubmed/32738430
https://doi.org/10.1152/jn.00066.2015
http://www.ncbi.nlm.nih.gov/pubmed/26792878
https://doi.org/10.1038/s41467-018-07941-0
http://www.ncbi.nlm.nih.gov/pubmed/30604759
https://doi.org/10.1016/j.nlm.2017.02.015
https://doi.org/10.1016/j.nlm.2017.02.015
http://www.ncbi.nlm.nih.gov/pubmed/28257877
https://doi.org/10.1152/jn.00662.2018
http://www.ncbi.nlm.nih.gov/pubmed/31215301
https://doi.org/10.1523/JNEUROSCI.3363-16.2017
https://doi.org/10.1523/JNEUROSCI.3363-16.2017
http://www.ncbi.nlm.nih.gov/pubmed/28842410
https://doi.org/10.1080/01690960903498424
https://doi.org/10.1080/01690960903498424
http://www.ncbi.nlm.nih.gov/pubmed/23667281
https://doi.org/10.1371/journal.pcbi.1011244


30. Kawato M, Furukawa K, Suzuki R. A hierarchical neural-network model for control and learning of vol-

untary movement. Biological Cybernetics. 1987; 57(3):169–185. https://doi.org/10.1007/BF00364149

PMID: 3676355

31. Albert ST, Shadmehr R. The Neural Feedback Response to Error As a Teaching Signal for the Motor

Learning System. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience.

2016; 36(17):4832–4845. https://doi.org/10.1523/JNEUROSCI.0159-16.2016 PMID: 27122039

32. Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ. Sensory prediction errors drive cer-

ebellum-dependent adaptation of reaching. Journal of Neurophysiology. 2007; 98(1):54–62. https://

doi.org/10.1152/jn.00266.2007 PMID: 17507504

33. Kim OA, Forrence AD, McDougle SD. Motor learning without movement. Proceedings of the National

Academy of Sciences of the United States of America. 2022; 119(30):e2204379119. https://doi.org/

10.1073/pnas.2204379119 PMID: 35858450

34. Jordan MI, Rumelhart DE. Forward models: Supervised learning with a distal teacher. Cognitive Sci-

ence. 1992; 16(3):307–354. https://doi.org/10.1207/s15516709cog1603_1

35. Haith AM, Krakauer JW. Model-based and model-free mechanisms of human motor learning.

Advances in Experimental Medicine and Biology. 2013; 782:1–21. https://doi.org/10.1007/978-1-

4614-5465-6_1 PMID: 23296478

36. Hadjiosif AM, Krakauer JW, Haith AM. Did We Get Sensorimotor Adaptation Wrong? Implicit Adapta-

tion as Direct Policy Updating Rather than Forward-Model-Based Learning. The Journal of Neurosci-

ence: The Official Journal of the Society for Neuroscience. 2021; 41(12):2747–2761. https://doi.org/

10.1523/JNEUROSCI.2125-20.2021 PMID: 33558432

37. Chen T, Lammert A, Parrell B. Modeling Sensorimotor Adaptation in Speech Through Alterations to

Forward and Inverse Models. In: Interspeech 2021. ISCA; 2021. p. 3201–3205. Available from: https://

www.isca-speech.org/archive/interspeech_2021/chen21m_interspeech.html.

38. Parrell B, Ramanarayanan V, Nagarajan S, Houde J. The FACTS model of speech motor control: Fus-

ing state estimation and task-based control. PLoS computational biology. 2019; 15(9):e1007321.

https://doi.org/10.1371/journal.pcbi.1007321 PMID: 31479444

39. Friedland B. Control System Design: An Introduction to State-space Methods. McGraw-Hill; 1986.

40. Stengel RF. Optimal control and estimation. Dover books on mathematics. New York: Dover Publica-

tions; 1994.

41. Todorov E, Jordan MI. Optimal feedback control as a theory of motor coordination. Nature Neurosci-

ence. 2002; 5(11):1226–1235. https://doi.org/10.1038/nn963 PMID: 12404008

42. Todorov E. Optimality principles in sensorimotor control. Nature Neuroscience. 2004; 7(9):907–915.

https://doi.org/10.1038/nn1309 PMID: 15332089

43. Guigon E, Baraduc P, Desmurget M. Optimality, stochasticity, and variability in motor behavior. Jour-

nal of Computational Neuroscience. 2008; 24(1):57–68. https://doi.org/10.1007/s10827-007-0041-y

PMID: 18202922

44. Scott SH. Optimal feedback control and the neural basis of volitional motor control. Nature Reviews

Neuroscience. 2004; 5(7):532–546. https://doi.org/10.1038/nrn1427 PMID: 15208695

45. Shadmehr R, Krakauer JW. A computational neuroanatomy for motor control. Experimental Brain

Research. 2008; 185(3):359–381. https://doi.org/10.1007/s00221-008-1280-5 PMID: 18251019

46. Houde JF, Nagarajan SS. Speech production as state feedback control. Frontiers in Human Neurosci-

ence. 2011; 5:82. https://doi.org/10.3389/fnhum.2011.00082 PMID: 22046152

47. Browman CP, Goldstein L. Articulatory phonology: an overview. Phonetica. 1992; 49(3-4):155–180.

https://doi.org/10.1159/000261913 PMID: 1488456

48. Saltzman EL, Munhall KG. A dynamical approach to gestural patterning in speech production. Ecologi-

cal Psychology. 1989; 1(4):333–382. https://doi.org/10.1207/s15326969eco0104_2

49. Klanke S, Vijayakumar S, Schaal S. A Library for Locally Weighted Projection Regression. Journal of

Machine Learning Research. 2008; 9(21):623–626.

50. Ballard KJ, Halaki M, Sowman P, Kha A, Daliri A, Robin DA, et al. An Investigation of Compensation

and Adaptation to Auditory Perturbations in Individuals With Acquired Apraxia of Speech. Frontiers in

Human Neuroscience. 2018; 12:510. https://doi.org/10.3389/fnhum.2018.00510 PMID: 30618687

51. Behroozmand R, Bonilha L, Rorden C, Hickok G, Fridriksson J. Neural correlates of impaired vocal

feedback control in post-stroke aphasia. NeuroImage. 2022; 250:118938. https://doi.org/10.1016/j.

neuroimage.2022.118938 PMID: 35092839

52. Tourville JA, Reilly KJ, Guenther FH. Neural mechanisms underlying auditory feedback control of

speech. NeuroImage. 2008; 39(3):1429–1443. https://doi.org/10.1016/j.neuroimage.2007.09.054

PMID: 18035557

PLOS COMPUTATIONAL BIOLOGY Prediction errors drive auditory-motor adaptation in FACTS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011244 July 28, 2023 35 / 39

https://doi.org/10.1007/BF00364149
http://www.ncbi.nlm.nih.gov/pubmed/3676355
https://doi.org/10.1523/JNEUROSCI.0159-16.2016
http://www.ncbi.nlm.nih.gov/pubmed/27122039
https://doi.org/10.1152/jn.00266.2007
https://doi.org/10.1152/jn.00266.2007
http://www.ncbi.nlm.nih.gov/pubmed/17507504
https://doi.org/10.1073/pnas.2204379119
https://doi.org/10.1073/pnas.2204379119
http://www.ncbi.nlm.nih.gov/pubmed/35858450
https://doi.org/10.1207/s15516709cog1603_1
https://doi.org/10.1007/978-1-4614-5465-6_1
https://doi.org/10.1007/978-1-4614-5465-6_1
http://www.ncbi.nlm.nih.gov/pubmed/23296478
https://doi.org/10.1523/JNEUROSCI.2125-20.2021
https://doi.org/10.1523/JNEUROSCI.2125-20.2021
http://www.ncbi.nlm.nih.gov/pubmed/33558432
https://www.isca-speech.org/archive/interspeech_2021/chen21m_interspeech.html
https://www.isca-speech.org/archive/interspeech_2021/chen21m_interspeech.html
https://doi.org/10.1371/journal.pcbi.1007321
http://www.ncbi.nlm.nih.gov/pubmed/31479444
https://doi.org/10.1038/nn963
http://www.ncbi.nlm.nih.gov/pubmed/12404008
https://doi.org/10.1038/nn1309
http://www.ncbi.nlm.nih.gov/pubmed/15332089
https://doi.org/10.1007/s10827-007-0041-y
http://www.ncbi.nlm.nih.gov/pubmed/18202922
https://doi.org/10.1038/nrn1427
http://www.ncbi.nlm.nih.gov/pubmed/15208695
https://doi.org/10.1007/s00221-008-1280-5
http://www.ncbi.nlm.nih.gov/pubmed/18251019
https://doi.org/10.3389/fnhum.2011.00082
http://www.ncbi.nlm.nih.gov/pubmed/22046152
https://doi.org/10.1159/000261913
http://www.ncbi.nlm.nih.gov/pubmed/1488456
https://doi.org/10.1207/s15326969eco0104_2
https://doi.org/10.3389/fnhum.2018.00510
http://www.ncbi.nlm.nih.gov/pubmed/30618687
https://doi.org/10.1016/j.neuroimage.2022.118938
https://doi.org/10.1016/j.neuroimage.2022.118938
http://www.ncbi.nlm.nih.gov/pubmed/35092839
https://doi.org/10.1016/j.neuroimage.2007.09.054
http://www.ncbi.nlm.nih.gov/pubmed/18035557
https://doi.org/10.1371/journal.pcbi.1011244


53. Haar S, Donchin O. A Revised Computational Neuroanatomy for Motor Control. Journal of Cognitive

Neuroscience. 2020; 32(10):1823–1836. https://doi.org/10.1162/jocn_a_01602 PMID: 32644882

54. Iskarous K. Vowel constrictions are recoverable from formants. Journal of Phonetics. 2010; 38

(3):375–387. https://doi.org/10.1016/j.wocn.2010.03.002 PMID: 20871808

55. Wan EA, Van Der Merwe R. The unscented Kalman filter for nonlinear estimation. In: Proceedings of

the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium

(Cat. No.00EX373); 2000. p. 153–158.

56. Abbs JH, Gracco VL, Cole KJ. Control of Multimovement Coordination: Sensorimotor Mechansims in

Speech Motor Programming. Journal of Motor Behavior. 1984; 16(2):195–232. https://doi.org/10.

1080/00222895.1984.10735318 PMID: 14713665

57. Gomi H, Honda M, Ito T, Murano EZ. Compensatory articulation during bilabial fricative production by

regulating muscle stiffness. Journal of Phonetics. 2002; 30(3):261–279. https://doi.org/10.1006/jpho.

2002.0173

58. Patri JF, Perrier P, Schwartz JL, Diard J. What drives the perceptual change resulting from speech

motor adaptation? Evaluation of hypotheses in a Bayesian modeling framework. PLoS computa-

tional biology. 2018; 14(1):e1005942. https://doi.org/10.1371/journal.pcbi.1005942 PMID:

29357357

59. Hajiyev C, Soken HE. Robust Adaptive Kalman Filter for estimation of UAV dynamics in the presence

of sensor/actuator faults. Aerospace Science and Technology. 2013; 28(1):376–383. https://doi.org/

10.1016/j.ast.2012.12.003

60. Hantzsch L, Parrell B, Niziolek CA. A single exposure to altered auditory feedback causes observable

sensorimotor adaptation in speech. eLife. 2022; 11:e73694. https://doi.org/10.7554/eLife.73694

PMID: 35816163

61. Mitsuya T, Macdonald EN, Purcell DW, Munhall KG. A cross-language study of compensation in

response to real-time formant perturbation. The Journal of the Acoustical Society of America. 2011;

130(5):2978–2986. https://doi.org/10.1121/1.3643826 PMID: 22087926

62. Mollaei F, Shiller DM, Gracco VL. Sensorimotor adaptation of speech in Parkinson’s disease. Move-

ment Disorders: Official Journal of the Movement Disorder Society. 2013; 28(12):1668–1674. https://

doi.org/10.1002/mds.25588 PMID: 23861349

63. Rochet-Capellan A, Ostry DJ. Simultaneous acquisition of multiple auditory-motor transformations in

speech. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2011; 31

(7):2657–2662. https://doi.org/10.1523/JNEUROSCI.6020-10.2011 PMID: 21325534

64. Lametti DR, Smith HJ, Freidin PF, Watkins KE. Cortico-cerebellar Networks Drive Sensorimotor

Learning in Speech. Journal of Cognitive Neuroscience. 2018; 30(4):540–551. https://doi.org/10.1162/

jocn_a_01216 PMID: 29211651

65. Tang DL, McDaniel A, Watkins KE. Disruption of speech motor adaptation with repetitive transcranial

magnetic stimulation of the articulatory representation in primary motor cortex. Cortex; a Journal

Devoted to the Study of the Nervous System and Behavior. 2021; 145:115–130. https://doi.org/10.

1016/j.cortex.2021.09.008 PMID: 34717269

66. Nam H, Goldstein L, Saltzman E, Byrd D. TADA: An enhanced, portable Task Dynamics model in

MATLAB. The Journal of the Acoustical Society of America. 2004; 115(5):2430–2430. https://doi.org/

10.1121/1.4781490

67. Crevecoeur F, Munoz DP, Scott SH. Dynamic Multisensory Integration: Somatosensory Speed

Trumps Visual Accuracy during Feedback Control. The Journal of Neuroscience: The Official Journal

of the Society for Neuroscience. 2016; 36(33):8598–8611. https://doi.org/10.1523/JNEUROSCI.0184-

16.2016 PMID: 27535908

68. Crevecoeur F, Kording KP. Saccadic suppression as a perceptual consequence of efficient sensori-

motor estimation. eLife. 2017; 6:e25073. https://doi.org/10.7554/eLife.25073 PMID: 28463113

69. Raharjo I, Kothare H, Nagarajan SS, Houde JF. Speech compensation responses and sensorimotor

adaptation to formant feedback perturbations. The Journal of the Acoustical Society of America. 2021;

149(2):1147. https://doi.org/10.1121/10.0003440 PMID: 33639824

70. Franken MK, Acheson DJ, McQueen JM, Hagoort P, Eisner F. Consistency influences altered auditory

feedback processing. Quarterly Journal of Experimental Psychology (2006). 2019; 72(10):2371–2379.

https://doi.org/10.1177/1747021819838939

71. Ranjan T, Smith M. Implicit motor adaptation is driven by motor performance prediction error rather

than sensory prediction error. In: Proceedings for MLMC 2020; 2020. Available from: https://sites.

google.com/view/mlmc-proceedings/acmcproceedings.

72. LeBovidge E, Li C, Max L. Toward understanding the limiting factors in speech auditory-motor adapta-

tion: A new look at perceptual targets; 2020. Available from: https://issp2020.yale.edu/.

PLOS COMPUTATIONAL BIOLOGY Prediction errors drive auditory-motor adaptation in FACTS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011244 July 28, 2023 36 / 39

https://doi.org/10.1162/jocn_a_01602
http://www.ncbi.nlm.nih.gov/pubmed/32644882
https://doi.org/10.1016/j.wocn.2010.03.002
http://www.ncbi.nlm.nih.gov/pubmed/20871808
https://doi.org/10.1080/00222895.1984.10735318
https://doi.org/10.1080/00222895.1984.10735318
http://www.ncbi.nlm.nih.gov/pubmed/14713665
https://doi.org/10.1006/jpho.2002.0173
https://doi.org/10.1006/jpho.2002.0173
https://doi.org/10.1371/journal.pcbi.1005942
http://www.ncbi.nlm.nih.gov/pubmed/29357357
https://doi.org/10.1016/j.ast.2012.12.003
https://doi.org/10.1016/j.ast.2012.12.003
https://doi.org/10.7554/eLife.73694
http://www.ncbi.nlm.nih.gov/pubmed/35816163
https://doi.org/10.1121/1.3643826
http://www.ncbi.nlm.nih.gov/pubmed/22087926
https://doi.org/10.1002/mds.25588
https://doi.org/10.1002/mds.25588
http://www.ncbi.nlm.nih.gov/pubmed/23861349
https://doi.org/10.1523/JNEUROSCI.6020-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21325534
https://doi.org/10.1162/jocn_a_01216
https://doi.org/10.1162/jocn_a_01216
http://www.ncbi.nlm.nih.gov/pubmed/29211651
https://doi.org/10.1016/j.cortex.2021.09.008
https://doi.org/10.1016/j.cortex.2021.09.008
http://www.ncbi.nlm.nih.gov/pubmed/34717269
https://doi.org/10.1121/1.4781490
https://doi.org/10.1121/1.4781490
https://doi.org/10.1523/JNEUROSCI.0184-16.2016
https://doi.org/10.1523/JNEUROSCI.0184-16.2016
http://www.ncbi.nlm.nih.gov/pubmed/27535908
https://doi.org/10.7554/eLife.25073
http://www.ncbi.nlm.nih.gov/pubmed/28463113
https://doi.org/10.1121/10.0003440
http://www.ncbi.nlm.nih.gov/pubmed/33639824
https://doi.org/10.1177/1747021819838939
https://sites.google.com/view/mlmc-proceedings/acmcproceedings
https://sites.google.com/view/mlmc-proceedings/acmcproceedings
https://issp2020.yale.edu/
https://doi.org/10.1371/journal.pcbi.1011244


73. Bourguignon NJ, Baum SR, Shiller DM. Lexical-perceptual integration influences sensorimotor adap-

tation in speech. Frontiers in Human Neuroscience. 2014; 8:208. https://doi.org/10.3389/fnhum.2014.

00208 PMID: 24860460

74. Patri JF, Diard J, Perrier P. Modeling Sensory Preference in Speech Motor Planning: A Bayesian

Modeling Framework. Frontiers in Psychology. 2019; 10:2339. https://doi.org/10.3389/fpsyg.2019.

02339 PMID: 31708828

75. Shadmehr R. Population coding in the cerebellum: a machine learning perspective. Journal of Neuro-

physiology. 2020; 124(6):2022–2051. https://doi.org/10.1152/jn.00449.2020 PMID: 33112717

76. MacDonald EN, Goldberg R, Munhall KG. Compensations in response to real-time formant perturba-

tions of different magnitudes. The Journal of the Acoustical Society of America. 2010; 127(2):1059–

1068. https://doi.org/10.1121/1.3278606 PMID: 20136227

77. Katseff S, Houde J, Johnson K. Partial compensation for altered auditory feedback: a tradeoff with

somatosensory feedback? Language and Speech. 2012; 55(Pt 2):295–308. https://doi.org/10.1177/

0023830911417802 PMID: 22783636

78. Mitsuya T, MacDonald EN, Munhall KG, Purcell DW. Formant compensation for auditory feedback

with English vowels. The Journal of the Acoustical Society of America. 2015; 138(1):413–424. https://

doi.org/10.1121/1.4923154 PMID: 26233040

79. Daliri A. A Computational Model for Estimating the Speech Motor System’s Sensitivity to Auditory Pre-

diction Errors. Journal of speech, language, and hearing research: JSLHR. 2021; 64(6):1841–1854.

https://doi.org/10.1044/2021_JSLHR-20-00484 PMID: 34043445

80. Gaines JL, Kim KS, Parrell B, Ramanarayanan V, Nagarajan SS, Houde JF. Discrete constriction loca-

tions describe a comprehensive range of vocal tract shapes in the Maeda model. JASA express letters.

2021; 1(12):124402. https://doi.org/10.1121/10.0009058 PMID: 35005711

81. Shiller DM, Sato M, Gracco VL, Baum SR. Perceptual recalibration of speech sounds following speech

motor learning. The Journal of the Acoustical Society of America. 2009; 125(2):1103–1113. https://doi.

org/10.1121/1.3058638 PMID: 19206885

82. Sato M, Shiller DM. Auditory prediction during speaking and listening. Brain and Language. 2018;

187:92–103. https://doi.org/10.1016/j.bandl.2018.01.008 PMID: 29402437

83. Scott TL, Haenchen L, Daliri A, Chartove J, Guenther FH, Perrachione TK. Noninvasive neurostimula-

tion of left ventral motor cortex enhances sensorimotor adaptation in speech production. Brain and

Language. 2020; 209:104840. https://doi.org/10.1016/j.bandl.2020.104840 PMID: 32738502

84. Story BH. Technique for “tuning” vocal tract area functions based on acoustic sensitivity functions. The

Journal of the Acoustical Society of America. 2006; 119(2):715–718. https://doi.org/10.1121/1.

2151802 PMID: 16521730

85. Villacorta VM, Perkell JS, Guenther FH. Sensorimotor adaptation to feedback perturbations of vowel

acoustics and its relation to perception. The Journal of the Acoustical Society of America. 2007; 122

(4):2306–2319. https://doi.org/10.1121/1.2773966 PMID: 17902866

86. Nault DR, Munhall KG. Individual variability in auditory feedback processing: Responses to real-time

formant perturbations and their relation to perceptual acuity. The Journal of the Acoustical Society of

America. 2020; 148(6):3709. https://doi.org/10.1121/10.0002923 PMID: 33379900

87. Feng Y, Gracco VL, Max L. Integration of auditory and somatosensory error signals in the neural con-

trol of speech movements. Journal of Neurophysiology. 2011; 106(2):667–679. https://doi.org/10.

1152/jn.00638.2010 PMID: 21562187

88. Lester-Smith RA, Daliri A, Enos N, Abur D, Lupiani AA, Letcher S, et al. The Relation of Articulatory and

Vocal Auditory-Motor Control in Typical Speakers. Journal of speech, language, and hearing research:

JSLHR. 2020; 63(11):3628–3642. https://doi.org/10.1044/2020_JSLHR-20-00192 PMID: 33079610

89. Abur D, Lester-Smith RA, Daliri A, Lupiani AA, Guenther FH, Stepp CE. Sensorimotor adaptation of

voice fundamental frequency in Parkinson’s disease. PloS One. 2018; 13(1):e0191839. https://doi.

org/10.1371/journal.pone.0191839 PMID: 29373589

90. Alemi R, Lehmann A, Deroche MLD. Changes in Spoken and Sung Productions Following Adaptation

to Pitch-shifted Auditory Feedback. Journal of Voice: Official Journal of the Voice Foundation. 2021; p.

S0892–1997(21)00079–5. PMID: 33745802

91. Martin CD, Niziolek CA, Duñabeitia JA, Perez A, Hernandez D, Carreiras M, et al. Online Adaptation to

Altered Auditory Feedback Is Predicted by Auditory Acuity and Not by Domain-General Executive

Control Resources. Frontiers in Human Neuroscience. 2018; 12:91. https://doi.org/10.3389/fnhum.

2018.00091 PMID: 29593516

92. Houde JF, Jordan MI. Sensorimotor adaptation of speech I: Compensation and adaptation. Journal of

speech, language, and hearing research: JSLHR. 2002; 45(2):295–310. https://doi.org/10.1044/1092-

4388(2002/023) PMID: 12003512

PLOS COMPUTATIONAL BIOLOGY Prediction errors drive auditory-motor adaptation in FACTS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011244 July 28, 2023 37 / 39

https://doi.org/10.3389/fnhum.2014.00208
https://doi.org/10.3389/fnhum.2014.00208
http://www.ncbi.nlm.nih.gov/pubmed/24860460
https://doi.org/10.3389/fpsyg.2019.02339
https://doi.org/10.3389/fpsyg.2019.02339
http://www.ncbi.nlm.nih.gov/pubmed/31708828
https://doi.org/10.1152/jn.00449.2020
http://www.ncbi.nlm.nih.gov/pubmed/33112717
https://doi.org/10.1121/1.3278606
http://www.ncbi.nlm.nih.gov/pubmed/20136227
https://doi.org/10.1177/0023830911417802
https://doi.org/10.1177/0023830911417802
http://www.ncbi.nlm.nih.gov/pubmed/22783636
https://doi.org/10.1121/1.4923154
https://doi.org/10.1121/1.4923154
http://www.ncbi.nlm.nih.gov/pubmed/26233040
https://doi.org/10.1044/2021_JSLHR-20-00484
http://www.ncbi.nlm.nih.gov/pubmed/34043445
https://doi.org/10.1121/10.0009058
http://www.ncbi.nlm.nih.gov/pubmed/35005711
https://doi.org/10.1121/1.3058638
https://doi.org/10.1121/1.3058638
http://www.ncbi.nlm.nih.gov/pubmed/19206885
https://doi.org/10.1016/j.bandl.2018.01.008
http://www.ncbi.nlm.nih.gov/pubmed/29402437
https://doi.org/10.1016/j.bandl.2020.104840
http://www.ncbi.nlm.nih.gov/pubmed/32738502
https://doi.org/10.1121/1.2151802
https://doi.org/10.1121/1.2151802
http://www.ncbi.nlm.nih.gov/pubmed/16521730
https://doi.org/10.1121/1.2773966
http://www.ncbi.nlm.nih.gov/pubmed/17902866
https://doi.org/10.1121/10.0002923
http://www.ncbi.nlm.nih.gov/pubmed/33379900
https://doi.org/10.1152/jn.00638.2010
https://doi.org/10.1152/jn.00638.2010
http://www.ncbi.nlm.nih.gov/pubmed/21562187
https://doi.org/10.1044/2020_JSLHR-20-00192
http://www.ncbi.nlm.nih.gov/pubmed/33079610
https://doi.org/10.1371/journal.pone.0191839
https://doi.org/10.1371/journal.pone.0191839
http://www.ncbi.nlm.nih.gov/pubmed/29373589
http://www.ncbi.nlm.nih.gov/pubmed/33745802
https://doi.org/10.3389/fnhum.2018.00091
https://doi.org/10.3389/fnhum.2018.00091
http://www.ncbi.nlm.nih.gov/pubmed/29593516
https://doi.org/10.1044/1092-4388(2002/023)
https://doi.org/10.1044/1092-4388(2002/023)
http://www.ncbi.nlm.nih.gov/pubmed/12003512
https://doi.org/10.1371/journal.pcbi.1011244


93. Kim KS, Max L. Estimating feedforward vs. feedback control of speech production through kinematic

analyses of unperturbed articulatory movements. Frontiers in Human Neuroscience. 2014; 8:911.

https://doi.org/10.3389/fnhum.2014.00911 PMID: 25426056

94. Purcell DW, Munhall KG. Adaptive control of vowel formant frequency: evidence from real-time for-

mant manipulation. The Journal of the Acoustical Society of America. 2006; 120(2):966–977. https://

doi.org/10.1121/1.2217714 PMID: 16938984

95. Wang H, Max L. Inter-Trial Formant Variability in Speech Production Is Actively Controlled but Does

Not Affect Subsequent Adaptation to a Predictable Formant Perturbation. Frontiers in Human Neuro-

science. 2022; 16:890065. https://doi.org/10.3389/fnhum.2022.890065 PMID: 35874163

96. Tang Dl, Parrell B, Niziolek CA. Variability is actively regulated in speech. bioRxiv. 2021;.

97. Patri JF, Diard J, Perrier P. Optimal speech motor control and token-to-token variability: a Bayesian

modeling approach. Biological Cybernetics. 2015; 109(6):611–626. https://doi.org/10.1007/s00422-

015-0664-4 PMID: 26497359

98. Morton SM, Bastian AJ. Cerebellar contributions to locomotor adaptations during splitbelt treadmill

walking. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2006; 26

(36):9107–9116. https://doi.org/10.1523/JNEUROSCI.2622-06.2006 PMID: 16957067

99. Jalali R, Miall RC, Galea JM. No consistent effect of cerebellar transcranial direct current stimulation

on visuomotor adaptation. Journal of Neurophysiology. 2017; 118(2):655–665. https://doi.org/10.

1152/jn.00896.2016 PMID: 28298304

100. Liew SL, Thompson T, Ramirez J, Butcher PA, Taylor JA, Celnik PA. Variable Neural Contributions to

Explicit and Implicit Learning During Visuomotor Adaptation. Frontiers in Neuroscience. 2018; 12:610.

https://doi.org/10.3389/fnins.2018.00610 PMID: 30279645

101. Mamlins A, Hulst T, Donchin O, Timmann D, Claassen J. No effects of cerebellar transcranial direct

current stimulation on force field and visuomotor reach adaptation in young and healthy subjects. Jour-

nal of Neurophysiology. 2019; 121(6):2112–2125. https://doi.org/10.1152/jn.00352.2018 PMID:

30943093

102. Tzvi E, Loens S, Donchin O. Mini-review: The Role of the Cerebellum in Visuomotor Adaptation. Cere-

bellum (London, England). 2022; 21(2):306–313. https://doi.org/10.1007/s12311-021-01281-4 PMID:

34080132

103. Shum M, Shiller DM, Baum SR, Gracco VL. Sensorimotor integration for speech motor learning

involves the inferior parietal cortex. The European Journal of Neuroscience. 2011; 34(11):1817–1822.

https://doi.org/10.1111/j.1460-9568.2011.07889.x PMID: 22098364

104. Deroche MLD, Nguyen DL, Gracco VL. Modulation of Speech Motor Learning with Transcranial Direct

Current Stimulation of the Inferior Parietal Lobe. Frontiers in Integrative Neuroscience. 2017; 11:35.

https://doi.org/10.3389/fnint.2017.00035 PMID: 29326563

105. Ohashi H, Ostry DJ. Neural Development of Speech Sensorimotor Learning. The Journal of Neurosci-

ence: The Official Journal of the Society for Neuroscience. 2021; 41(18):4023–4035. https://doi.org/

10.1523/JNEUROSCI.2884-20.2021 PMID: 33758018

106. van Vugt FT, Near J, Hennessy T, Doyon J, Ostry DJ. Early stages of sensorimotor map acquisition:

neurochemical signature in primary motor cortex and its relation to functional connectivity. Journal of

Neurophysiology. 2020; 124(6):1615–1624. https://doi.org/10.1152/jn.00285.2020 PMID: 32997558

107. Chartier J, Anumanchipalli GK, Johnson K, Chang EF. Encoding of Articulatory Kinematic Trajectories

in Human Speech Sensorimotor Cortex. Neuron. 2018; 98(5):1042–1054.e4. https://doi.org/10.1016/j.

neuron.2018.04.031 PMID: 29779940

108. Max L, Wallace ME, Vincent I. Sensorimotor Adaptation to Auditory Perturbations During Speech:

Acoustic and Kinematic Experiments. In: Proceedings of the 15th International Congress of Phonetic

Sciences. Barcelona, Spain; 2003. p. 4.

109. Daliri A, Chao SC, Fitzgerald LC. Compensatory Responses to Formant Perturbations Proportionally

Decrease as Perturbations Increase. Journal of speech, language, and hearing research: JSLHR.

2020; 63(10):3392–3407. https://doi.org/10.1044/2020_JSLHR-19-00422 PMID: 32976078

110. Klein E, Brunner J, Hoole P. The relevance of auditory feedback for consonant production: The case of

fricatives. Journal of Phonetics. 2019; 77:100931. https://doi.org/10.1016/j.wocn.2019.100931

111. Daliri A, Max L. Stuttering adults’ lack of pre-speech auditory modulation normalizes when speak-

ing with delayed auditory feedback. Cortex; a Journal Devoted to the Study of the Nervous Sys-

tem and Behavior. 2018; 99:55–68. https://doi.org/10.1016/j.cortex.2017.10.019 PMID:

29169049

112. Daliri A, Wieland EA, Cai S, Guenther FH, Chang SE. Auditory-motor adaptation is reduced in adults

who stutter but not in children who stutter. Developmental Science. 2018; 21(2). https://doi.org/10.

1111/desc.12521 PMID: 28256029

PLOS COMPUTATIONAL BIOLOGY Prediction errors drive auditory-motor adaptation in FACTS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011244 July 28, 2023 38 / 39

https://doi.org/10.3389/fnhum.2014.00911
http://www.ncbi.nlm.nih.gov/pubmed/25426056
https://doi.org/10.1121/1.2217714
https://doi.org/10.1121/1.2217714
http://www.ncbi.nlm.nih.gov/pubmed/16938984
https://doi.org/10.3389/fnhum.2022.890065
http://www.ncbi.nlm.nih.gov/pubmed/35874163
https://doi.org/10.1007/s00422-015-0664-4
https://doi.org/10.1007/s00422-015-0664-4
http://www.ncbi.nlm.nih.gov/pubmed/26497359
https://doi.org/10.1523/JNEUROSCI.2622-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16957067
https://doi.org/10.1152/jn.00896.2016
https://doi.org/10.1152/jn.00896.2016
http://www.ncbi.nlm.nih.gov/pubmed/28298304
https://doi.org/10.3389/fnins.2018.00610
http://www.ncbi.nlm.nih.gov/pubmed/30279645
https://doi.org/10.1152/jn.00352.2018
http://www.ncbi.nlm.nih.gov/pubmed/30943093
https://doi.org/10.1007/s12311-021-01281-4
http://www.ncbi.nlm.nih.gov/pubmed/34080132
https://doi.org/10.1111/j.1460-9568.2011.07889.x
http://www.ncbi.nlm.nih.gov/pubmed/22098364
https://doi.org/10.3389/fnint.2017.00035
http://www.ncbi.nlm.nih.gov/pubmed/29326563
https://doi.org/10.1523/JNEUROSCI.2884-20.2021
https://doi.org/10.1523/JNEUROSCI.2884-20.2021
http://www.ncbi.nlm.nih.gov/pubmed/33758018
https://doi.org/10.1152/jn.00285.2020
http://www.ncbi.nlm.nih.gov/pubmed/32997558
https://doi.org/10.1016/j.neuron.2018.04.031
https://doi.org/10.1016/j.neuron.2018.04.031
http://www.ncbi.nlm.nih.gov/pubmed/29779940
https://doi.org/10.1044/2020_JSLHR-19-00422
http://www.ncbi.nlm.nih.gov/pubmed/32976078
https://doi.org/10.1016/j.wocn.2019.100931
https://doi.org/10.1016/j.cortex.2017.10.019
http://www.ncbi.nlm.nih.gov/pubmed/29169049
https://doi.org/10.1111/desc.12521
https://doi.org/10.1111/desc.12521
http://www.ncbi.nlm.nih.gov/pubmed/28256029
https://doi.org/10.1371/journal.pcbi.1011244


113. Houde J, Niziolek C, Kort N, Agnew Z, Nagarajan S. Simulating a state feedback model of speaking.
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